

Ian Sykes
Xator Corporation
ADMLC
07 March 2023

DEFENSE THREAT REDUCTION AGENCY

Deter. Prevent. Prevail.

Approved for public release

SCIPUFF

- Second-order Closure Integrated PUFF
- Lagrangian Gaussian puff dispersion model
- Uses second-order turbulence closure to relate diffusion rates to turbulent velocity statistics
- Also uses turbulence closure to predict concentration fluctuation variance in addition to mean concentration

SCIPUFF Buoyancy and Dynamics

- Density differences drive dynamic effects
- SCIPUFF carries velocities and temperature perturbations (from ambient) in each dynamic puff
 - Buoyancy only drives vertical velocity
- Any gas, or vapor, puff can be dynamic
- Buoyancy can be positive or negative
- SCIPUFF uses the Boussinesq approximation
 - Assumes relatively small temperature perturbations, <~ 100°C
- Also assumes incompressibility
 - Velocities much smaller than speed of sound

Puff Variables

Basic puff integral quantities are

$$\langle \theta_p \rangle, \langle \overline{u}_{ip} \rangle, \langle \overline{c} \theta_p \rangle, \langle \overline{c} u_{ip} \rangle, \langle \overline{c} b_p \rangle, \langle \overline{c} \overline{\theta}_p \rangle, \langle \overline{c} \overline{u}_{ip} \rangle, \langle \overline{c} \overline{b}_p \rangle$$

where θ_p is the temperature perturbation, $u_{ip} = (u_p, v_p, w_p)$ is the velocity component perturbation, b is the puff material buoyancy, and c is concentration

- Angle brackets denote spatial integral over the Gaussian puff
- Overbar denotes ensemble averaging (turbulent fluctuations)
- Buoyancy, b, is proportional to material density perturbation (from air) and the local concentration of the material, c
- SCIPUFF carries nonlinear integral quantities representing both the product of the mean quantities and the mean value of the product
 - This enables a description of the turbulent correlation between the two quantities

Puff Overlap Treatment

- SCIPUFF predicts the turbulence-driven variance of the concentration, and therefore needs to calculate overlap integrals for all the puffs
- The concentration-weighted mean quantities are overlap summations over all puffs to account for interactions, e.g.

$$\left\langle \overline{c} \; \overline{\theta}_p \right\rangle_{\alpha} = \sum_{\beta} \left\langle \overline{c} \right\rangle_{\alpha} \left\langle \overline{\theta}_p \right\rangle_{\beta} G_{\alpha\beta}$$

where α and β are puff indices, and $G_{\alpha\beta}$ is the integral of the product of the two Gaussian shape functions

 This allows dynamic puffs to dynamically move other materials, such as small particles or droplets

Buoyancy-driven Motion

Conservation of momentum and temperature

$$\frac{d}{dt} \left\langle \overline{u}_{ip} \right\rangle = g_i \left(\frac{\left\langle \overline{\theta}_p \right\rangle}{T_0} - B_{gas} \frac{\left\langle c \right\rangle}{1 + \hat{B}} \right)$$

$$\frac{d}{dt} \left\langle \overline{\theta}_p \right\rangle = -\frac{d\theta_{amb}}{dz} \left\langle \overline{w}_p \right\rangle$$

- The gas buoyancy is $B_{gas} = \frac{\rho_{gas} \rho_0}{\rho_{gas} \rho_0}$ and \hat{B} is a
 - non-Boussinesq correction factor based on the effective overlap gas density, used to prevent accelerations exceeding the gravity value.
- g_i is the gravitational acceleration (vertical) and T_0 is the ambient temperature

Puff Velocities

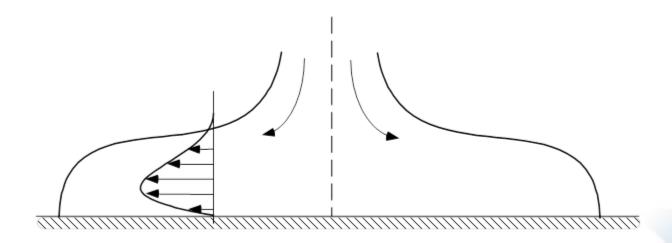
 Puff dynamic velocities are obtained from the correlation integrals, e.g.

$$\frac{d}{dt} \left\langle \overline{w_p c} \right\rangle = \frac{g}{T_0} \left\langle \overline{\theta_p c} \right\rangle - \frac{g \left\langle \overline{b_p c} \right\rangle}{1 + \hat{B}} - \frac{\left\langle \overline{w_p c} \right\rangle - \left\langle \overline{w_p c} \right\rangle}{\tau_c}$$

- The dynamic velocities are defined as $\hat{\boldsymbol{u}}_p = \frac{\langle \overline{\boldsymbol{u}_p c} \rangle}{\langle c \rangle}$ and a dynamic entrainment velocity is defined by the perturbation velocities and Richardson number, and this defines a dynamic diffusivity, added to the ambient diffusion
- This defines the puff velocity perturbation in the absence of any ground interaction

Dense Gas Effects

- Negative vertical velocities occur due to cold temperatures or dense gases
- When the puff interacts with the ground surface, pressure forces generate lateral outward motion, i.e. slumping.



Dense Gas Flowfield

 We can show that the mean vertical velocity integral is equivalent to the vertical moment of vorticity

$$\langle w_p \rangle = \langle \boldsymbol{e}_3 \bullet \boldsymbol{x} \times \boldsymbol{\omega} \rangle$$

and this can be used to define a horizontal flowfield

$$u_{X} = U_{0} \frac{X}{L_{X}} \frac{L_{Y} \sqrt{2}}{\sqrt{L_{X}^{2} + L_{Y}^{2}}} \exp\left(-\frac{X^{2}}{L_{X}^{2}} - \frac{Y^{2}}{L_{Y}^{2}}\right); \qquad u_{Y} = U_{0} \frac{Y}{L_{Y}} \frac{L_{X} \sqrt{2}}{\sqrt{L_{X}^{2} + L_{Y}^{2}}} \exp\left(-\frac{X^{2}}{L_{X}^{2}} - \frac{Y^{2}}{L_{Y}^{2}}\right)$$

• Here, principal axes of the puff define the coordinates, and the length scales are related to the puff sigma's. The velocity scale is proportional to $\langle w_p \rangle$.

Dense Gas Velocity

Forming the vertical moment of vorticity, we determine

$$U_0 = -\frac{\left\langle w_p \right\rangle}{\pi \sqrt{2}} \, \frac{\sqrt{L_X^2 + L_Y^2}}{L_X^2 \, L_Y^2}$$

which completes the definition of the horizontal flowfield

- Note that the dense gas flowfield is zero at the center of the puff, so the puff does not move itself.
- It does have velocity gradients, so it spreads laterally and slumps vertically
- It also moves and distorts other puffs in its neighborhood

Dense Gas on Terrain

- A dense gas on sloping terrain will move down the slope
- This effect is included using a simplified representation; use the component of the free-field vertical velocity resolved along the slope direction
- Thus

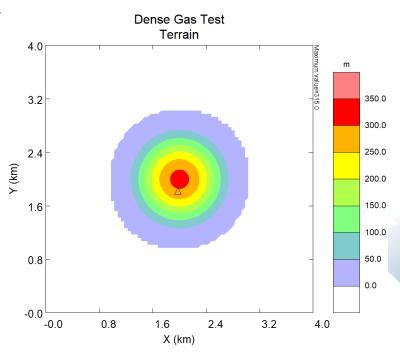
$$\hat{u}_{dense} = \frac{\left\langle \overline{w_p c} \right\rangle}{\left\langle c \right\rangle} \frac{h_x}{\sqrt{1 + h_x^2}}; \quad \hat{v}_{dense} = \frac{\left\langle \overline{w_p c} \right\rangle}{\left\langle c \right\rangle} \frac{h_y}{\sqrt{1 + h_y^2}}$$

Where h is terrain elevation, and h_x and h_y are the terrain slopes, i.e.

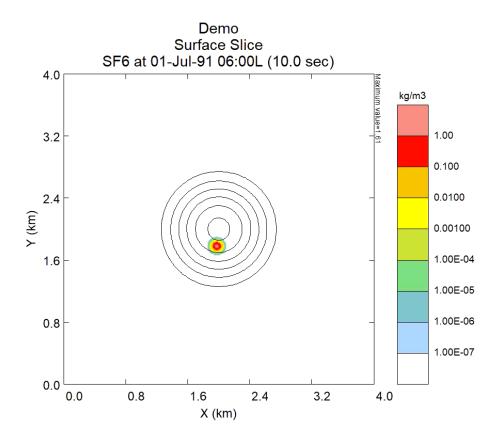
$$h_x = \frac{\partial h}{\partial x}; h_y = \frac{\partial h}{\partial y}$$

Idealized Test Case

- Circular hill, 300m high, no wind
- Instantaneous dense gas release
 - 5 times air density
 - 5m sigma
 - Surface release
 - Pure material



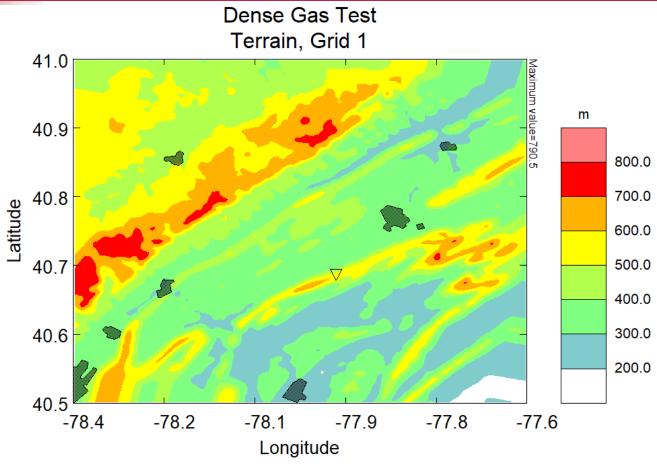
Idealized Test Case



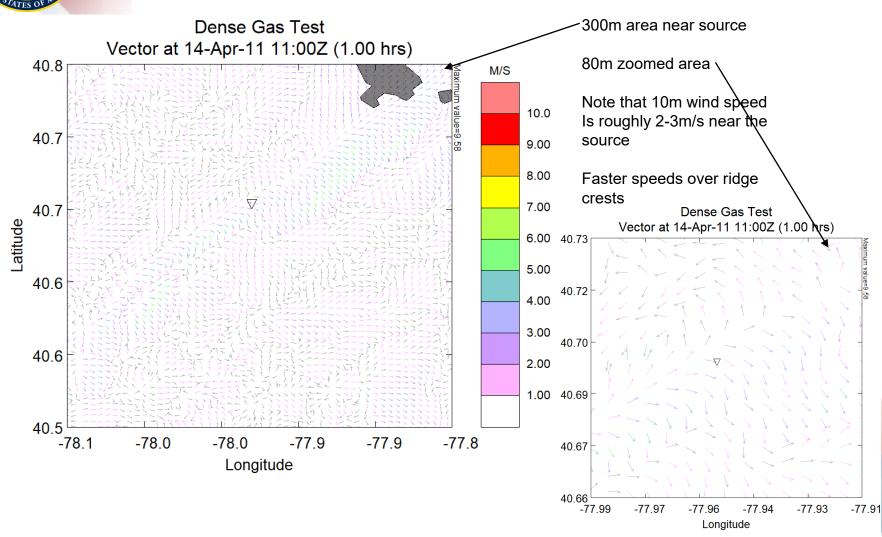
Real-world Example

- CO₂ release
 - 1000kg/min for 12min
- High resolution stable boundary layer meteorology from Penn State Univ
- Note that dense gas effects are most significant under light wind conditions
- High winds rapidly dilute the concentration and eliminate dynamic effects

Real-world terrain



Real-world 10m velocity field



Dense Gas Dosage – 80m domain

Color shading is CO₂, black contours are for same release of a passive trace

