

Optimisation of CB sensing

Paul Westoby
CB Advice Group, CBR Division

DSTL/TR137935

22/08/2022 / © Crown copyright 2022 Dstl

UK OFFICIAL

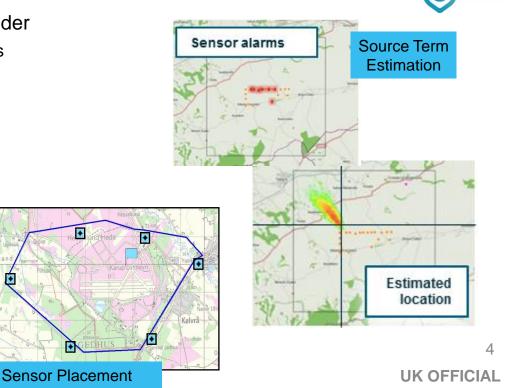
Overview

- Motivation
 - Hazard identification and characterisation
- Background
 - Decision Support Tools
- Background
 - Sensor Placement Tool (SPT)
- Latest SPT developments
 - Correlation
- Future focus
 - Complex sensor systems

Motivation: Situational Awareness

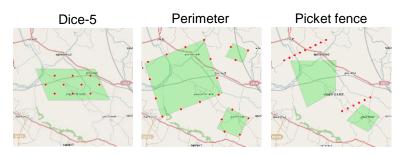
 To reduce casualties and maintain tempo during a CBR event it is necessary to understand the downwind hazard

- Immediate impacts
 - Masking/de-masking strategies
 - Minimise casualties
 - Alternative courses of action
 - Hazard avoidance
 - Minimize protection requirement
- Medium-term response
 - Decontamination (from deposition)
 - Personnel
 - Assets
 - Medical countermeasures
 - Minimise use
- Long-term response
 - Forensics
 - Examination of release location

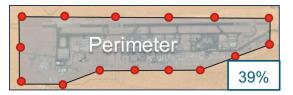


Background: Decision Support Tools

- Decision support tools have wide-ranging application to support the military commander
 - Strategic through to tactical command levels
 - Pre-deployment planning
 - In support of acquisition programmes
 - Deployment / pre-event
 - What should be deployed and where?
 - During / post-event
 - Mitigation strategies
 - Consequence management
 - Maintain operational tempo
 - Two key capabilities
 - Sensor Placement Tool
 - Source Term Estimation


Sensor Placement Tool

- UK MOD requires expert advice to ensure optimum benefit from and cost effectiveness of the CB sense capability
- This advice is supplied through the Sensor Placement Tool (SPT) which has two main uses:
 - To support procurement of sensor technologies by assessing and scoring various configurations of sensors
 - As a planning capability identifying optimal locations in which to place sensors

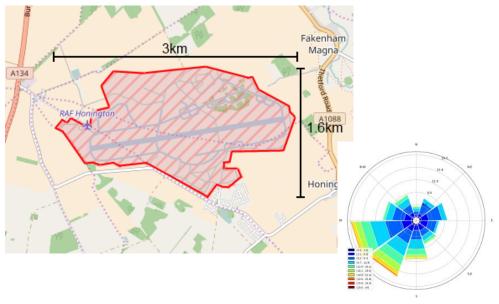


SPT: Application

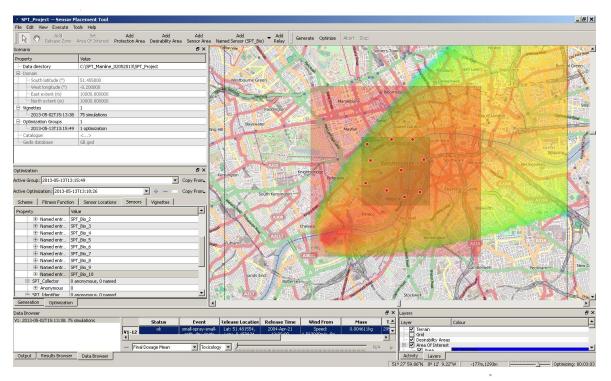
- Sense system performance depends on numerous factors:
 - Meteorology / Threat details / Quality and quantity of sensors
- Sensor Placement Tool
 - Assesses sensor systems
 - Provides analysis of protection levels
 - Optimises sensor placement
- SPT has been used to:
 - Identify what is achievable
 - Inform requirements
 - Down-select system concepts
 - Generate laydowns for Bio sense capability operationally

SPT Approach

- Fitness function designed to assess a given sensor placement based on criteria of interest:
 - Probability of detection
 - Probability of one or more sensors detecting a threat over the length of the simulation
 - Warning time
 - Specify a desired warning time and asses ability of a group of sensors to alarm in a timely manner
 - Desirability
 - Allows algorithm the assign preferential weights to areas where sensor placement is more convenient or exclude / penalise areas where sensors can't be placed (e.g. runways)
- Optimisation algorithm run to find best fitness value
 - Modified simulated annealing approach
 - Set a maximum number of iterations (typically 1x10⁶)
 - Modifications to avoid getting stuck at local extrema

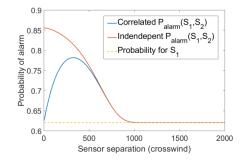

SPT: Demo Exercise

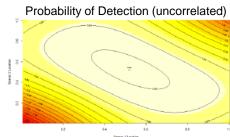
Overview: Provide a sensor placement laydown for RAF Honington to support a Biological Surveillance Collector System (BSCS) user field trial

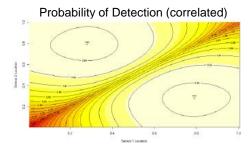

Information we require:

- Base Location:
 - 52.335N, -0.7754W
- Base Dimension:
 - See map
- Threat Type:
 - Biological sprayer
 - Off-base releases up to 2 km away
- Meteorology:
 - Historical (current month)
- Sensor Type:
 - Up to 15 BW collectors
 - Collectors must be placed on-base
 - Avoid placing collectors on the runway

Where Do I Place My Sensors?





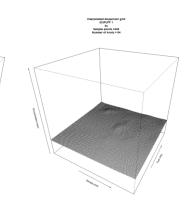

Optimized Sensor Placement provided through the Sensor Placement Tool

SPT Challenges

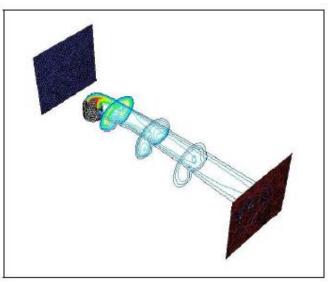
- 1. SPT **threats** are generated first and stored as data grids for multiple time points
 - 1 minute temporal resolution; 6 hour periods
 - Large amounts of data (~20Gb)
- 2. In the current optimiser, sensors are treated independently
 - Inaccurate when sensors are in close proximity
 - Can result in unwanted co-location of sensors from sensor optimization
 - Limitation in SPT results for small scenario (<1 km²), large number of sensors (>1 per 10m²) or networked sensors
 - Temporal esclution would need to be much finer to incorporate correlation between sensors

Latest SPT Developments

- Initial investigation into correlation algorithm identified opportunity in rapid dispersion modelling
 - Dispersion model emulation
 - Data compression
 - Threat data storage not required



- Enabler for moving sensor capability
- Expands deployment potential


Latest Developments – work with University of Liverpool (1)

Work to-date has included:

- Use of Gaussian processes to estimate spatiotemporal correlations for large number of sensors
- Development a testbed which includes:
 - Efficient method of calculating probability of alarm, with pair-wise correlation between sensors
 - Algorithms designed to reduce memory usage during optimisation phase
- Validation studies for correlation algorithms
 - CFD simulations using ANSYS Fluent
 - Analysis of existing wind tunnel data from Dstl

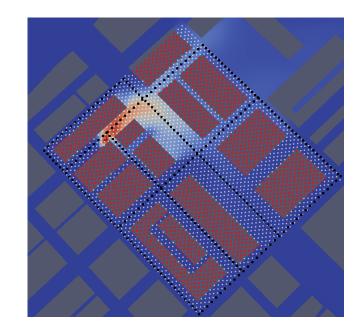
Fluent simulation of smoke from a chimney

12

Latest Developments – work with University of Liverpool (2)

Ongoing work:

- Integrating the data compression algorithm into the testbed to remove dependence on the grid and reduce storage required
- Testing of different optimisation algorithms within the testbed
- Further validation studies using wind tunnel data to determine correlation between real sensors



Credit: I. Hall

Future focus

- Development of an SPT-type framework that operates across a continuous parameter space
- Application to complex sensor systems
 - Optimisation of the path of moving sensors
 - Assessment / optimisation of networked sensor systems
- Optimisation for source-term estimation
- Deployment and real-time operation on hand-held devices

Discover more

