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PREFACE 

In 1977 a meeting of representatives of government departments, utilities and 
research organisations was held to discuss methods of calculation of atmospheric 
dispersion for radioactive releases. Those present agreed on the need for a 
review of recent developments in atmospheric dispersion modelling, and a 
Working Group was formed. Those present at the meeting formed an informal 
Steering Committee, that subsequently became the UK Atmospheric Dispersion 
Modelling Liaison Committee. That Committee operated for a number of years. 
Members of the Working Group worked voluntarily and produced a series of 
reports. A workshop on dispersion at low wind speeds was also held, but its 
proceedings were never published. 

The Committee has been reorganised and has adopted terms of reference. The 
organisations represented on the Committee, and the terms of reference 
adopted, are given in this report. The organisations represented on the 
Committee pay a small annual subscription. The money thus raised is used to 
fund reviews on topics agreed by the Committee, and to support in part its 
secretariat, provided by Health Protection Agency (HPA). The new arrangements 
came into place for the start of the 1995/96 financial year. This report describes 
the most recent activities of the Committee. These included a review of issues 
associated with modelling atmospheric dispersion in changing meteorological 
conditions and a review of techniques for source term estimation and event 
reconstruction. The technical specifications for the contracts are given in this 
report, and the contract reports are attached as annexes to this report. Previous 
studies funded by the Committee are described in its earlier reports. 

The Committee intends to place further contracts in future years and would like 
to hear from those interested in tendering for such contracts. They should 
contact the Secretary: 

 Mr J G Smith 
 Health Protection Agency 
 Chilton  
 Didcot 
 Oxon  OX11 0RQ 
 
 E-mail: ADMLC@hpa.org.uk 
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1 ORGANISATIONS REPRESENTED ON THE 
COMMITTEE 

The organisations on the committee at the time of publication of this report are: 

AMEC 

Atomic Weapons Establishment, Aldermaston 

Defence Science and Technology Laboratory 

Department for Environment Food and Rural Affairs (DEFRA) 

Department of Energy and Climate Change (DECC)  

Environment Agency 

Food Standards Agency 

Health and Safety Executive 

  Hazardous Installations Directorate 

  Office for Nuclear Regulation 

Health Protection Agency 

Home Office 

Meteorological Office  

Nuclear Department, HMS Sultan 

Scottish Environment Protection Agency  

Shell Global Solutions 

 

The present Chairman is Dr Matthew Hort of the Met Office and the Secretariat is 
provided by the HPA. 
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2 TERMS OF REFERENCE 

The terms of reference of the committee are: 

Areas of technical interest 

1. ADMLC's main aim is to review current understanding of atmospheric dispersion 
and related phenomena for application primarily in authorisation or licensing of 
discharges to atmosphere resulting from industrial, commercial or institutional 
sites. ADMLC is primarily concerned with dispersion from a particular regulated 
site or from discrete sources, and will not normally consider work in the 
following areas: traffic pollution, acid rain and ozone.  

2. ADMLC is concerned both with releases under controlled conditions occurring at 
a constant rate over long periods, and with releases over shorter periods such 
as accidents or controlled situations where the release rate varies. 

3. ADMLC is concerned with modelling dispersion at all scales, including on-site 
and within buildings.  
 

Organisations and outputs 

4. The Committee shall consist of representatives of Government Departments, 
Government Agencies and organisations with an interest in modelling dispersion 
of material for the situations identified above. Each organisation represented on 
the Committee shall pay an annual membership fee. 

5. ADMLC believes that it can be most effective by limiting its membership to 
about 25 organisations. New organisations will only be admitted to membership 
of ADMLC if the majority of existing members agree to their membership. 

6. ADMLC aims to review, collate, interpret and encourage research into applied 
dispersion modelling problems. It does not endorse particular brands or 
suppliers of commercial models. However, it is concerned to ensure that users 
for industrial applications are aware of what is available, how it can be applied 
to particular problems and of the uncertainties in the results. 

7. The Committee will commission work on selected topics. These should be 
selected following discussion and provisional agreement at meetings of the 
Committee, followed by confirmation after the meeting. It will produce reports 
describing current knowledge on the topics. These may be reports from 
contractors chosen by the committee or may be based on the outcome of 
conferences or workshops organised on behalf of the committee. The money 
raised from membership fees will be used to fund contractors, organise 
workshops and report on their outcome, and any other matters which the 
Committee may decide.  
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3 WORK FUNDED DURING THE YEAR 

3.1 Reviewing Issues Associated with Modelling 
Atmospheric Dispersion in Changing Meteorological 
Conditions 

Many models of atmospheric dispersion assume steady state conditions, ie, that 
the atmospheric conditions remain constant during the travel of the released 
material to the point of interest, and in some cases also throughout the period 
over which material is released. ADMLC would like to identify those situations 
where these limitations are not appropriate and to this end wishes to 
commission a study to review the issues and priorities associated with modelling 
dispersion in changing met conditions.  ADMLC wish the results of this review to 
be presented to ADMLC together with options for possible modelling studies to 
further explore the issues. 

It is appreciated that met conditions may change temporally, spatially or as a 
combination of the two. The implications of these changes for atmospheric 
dispersion should be discussed, However, ADMLC is primarily concerned with 
temporal changes and to avoid this study becoming too wide and unfocussed it 
may be necessary to concentrate on this aspect only. Temporal changes in met 
conditions are those situations where the meteorology at a point on the 
dispersion path changes with time while the dispersing material is still passing 
that point. This change in conditions may be significant for some applications 
and therefore the dispersion of the plume cannot be adequately modelled using 
a single set of met data. As well as modelling the transport of the plume 
adequately consideration should be given to the sensitivity of the receptor point. 
For some receptors it may be necessary to predict air concentrations averaged 
over periods of less than an hour while for others annual average air 
concentrations may be sufficient. 

A review of historical events where changes in meteorological conditions were 
significant should be included as input to the decision on whether changing 
meteorology is significant.  One such example would be short-term rainfall 
events over UK uplands that coincided with the arrival of the radioactive plume 
from Chernobyl and lead to long-term implications for sheep farming.  

The review should also consider the modelling application (eg, emergency 
response, emergency planning, air quality management and continuous annual 
discharges) and the endpoints to be calculated. What are the particular issues 
associated with the use of steady-state models for these applications? It is only 
worth discriminating between different met conditions if these differences mean 
that there will be significantly different consequences for the endpoints of 
interest. 

For each application the use of non steady-state models should be considered 
and the potential benefits of using them discussed. Are suitable models and 
input data available? To what extent are data available to validate the models? 
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Suggestions for modelling exercises to demonstrate/test how the use of non 
steady-state models can improve predictions should be put forward for each 
application. It is possible that these exercises might also be used to demonstrate 
that steady-state models are appropriate for some applications.  

In summary the project should: 

• Identify the causes of changing met conditions, focussing mainly on 
temporal changes 

• Discuss the implications of these changes for atmospheric dispersion 

• Review historical events where changes in met were important to the 
outcome 

• Discuss the requirements of dispersion modelling for various applications, 
ie, emergency response etc taking into account the endpoints of interest 

• Discuss the issues associated with using steady-state models for these 
applications and prioritise in order of importance/greatest impact 

• Discuss if suitable models and data (met, sources, validation data) are 
available for non steady-state modelling 

• Discuss how modelling might be used to demonstrate that non steady-
state models are better/no better for each application 

• Interim presentation of progress 

• Final presentation of findings and recommendations for modelling studies. 

 

The report on this work is published as ADMLC/2010/1. 

3.2 Source Term Estimation and Event Reconstruction: 
A Survey 

Hazardous Chemical, Biological, Radiological and Nuclear (CBRN) releases can 
occur from either a deliberate attack or an accidental incident. Rapid detection, 
assessment and early response to CBRN releases could dramatically reduce the 
extent of human exposure, help mitigate the immediate disruption and minimize 
the cost of the subsequent clean up. To this end, by characterising the plume 
through time, either directly or via source term estimation and a dispersion 
model, prediction of the dispersion of the contaminant can be made.  

For example, in the case of an accidental industrial release, hazard assessment 
via event reconstruction will identify likely release times and masses to enable 
accurate targeting of warnings to surrounding areas. Or alternatively, for a 
covert bioterror attack of an agent such as anthrax, source term estimation and 
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event reconstruction could help to inform the planning of public health mitigation 
strategies. 

With particular interest in this application in the last few years, numerous 
methodologies have been developed for making inference about source term 
parameters from a wide range of data sources. 

ADMLC is interested in seeking tenders to review the state-of-the-art for source 
term estimation and event reconstruction. It should be emphasised that the 
techniques of interest are those that can predict the source term from the 
subsequent pattern of dispersion in the environment. The main focus of the 
study should be a broad scope investigation of these different methods with 
clear benefits and drawbacks of each, together with the different contexts of 
use. It should be assumed that an estimate of the source term based on the 
processes that lead to its creation will not be possible due to a lack of 
information. 

Generally, the mathematical methods applied to these problems include 
Bayesian, Markov Chain Monte Carlo (MCMC), four dimensional variational 
methods, adjoint assimilation, Kalman filter, statistical learning, eg, Genetic 
algorithm or simulated annealing and other heuristic schemes. 

The particular method of preference will depend on the particular context in 
question. Considerations include the scale (large scale (eg, international) to 
local, small scale (eg, 10 km) ), setting (industrial, homeland defence, military) 
and the particular parameters of interest (eg, location, time of release, mass, 
number of releases, probability distribution or point estimate, release rate, 
moving releases). 

It is envisioned that there may be distinct methodologies for particular contexts 
and as such the review may be divided between these. 

Further, specific methods may have dependencies upon a given dispersion 
model, so this information should not be overlooked. However, the limitations of 
a given dispersion model are not the focus of this survey. 

Finally, the study should summarise its findings and advise on future work 
needed to develop this topic. 

The report on this work is published as ADMLC/2011/1. 
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ABSTRACT 
Changing meteorological conditions along the path of a pollutant between source 
and receptor are non-steady-state conditions by definition.  Temporal and spatial 
changes in meteorological conditions cover a broad spectrum from large scale 
(large cyclonic or anticyclonic system) down to local scale (such as 
micrometeorological variations).  Steady-state models, such as Gaussian plume 
models, are widely used for atmospheric dispersion simulations for different 
applications and in many cases are adequate for the purpose.  However, 
depending on the distance from the source to the point of interest for a specific 
application, the rapidity of the meteorological changes and the type of 
application considered, the use of a steady-state model could be questioned. 

The review identified the typical changing meteorological conditions which could 
trigger non-steady-state situations and impact on the pollutant concentration 
(accumulation, recirculation or deposition) and/or the pollutant path (curved 
trajectory).  The assumptions of steady-state models are discussed to determine 
situations when the simulation should use a non-steady-state model instead.  
Most of the discussion being qualitative, datasets from experiments which could 
be used for testing the sensitivity and the discrepancy between steady-state and 
non-steady-state models in critical non-steady-state situations are identified.  A 
number of tests are proposed to quantify the discrepancies in those specific 
situations. 
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EXECUTIVE SUMMARY 

This review, commissioned by ADMLC, investigates the modelling of atmospheric 
dispersion in variable weather conditions and their impact on various 
applications.  The focus of the study was to look at the effects of temporal 
changes in meteorological conditions on the pollutant plume when travelling 
between source and receptor.  Steady-state models, such as Gaussian plume 
models, are widely used for atmospheric dispersion simulations for different 
applications and in many cases are adequate for the purpose.  However, results 
of some non-steady-state situations simulated by steady-state models should be 
treated with caution and the use of a steady-state model may be questioned. 

The review identified the typical changing meteorological conditions which could 
trigger non-steady-state situations and impact adversely on the pollutant 
concentration or deposition fluxes (accumulation, recirculation or deposition) 
and/or the pollutant path (curved trajectory).  The main changes in 
meteorological conditions investigated are passage of fronts, low wind speed 
conditions, thermally induced circulations and temperature inversions but it is 
worth noting that any combinations of these conditions can occur regularly.  
Some variations in meteorological conditions are defined by the local physical 
characteristics of an area, such as land/sea breeze circulation or mountain/valley 
circulation, and can occur only at specific locations but others, such as the 
passage of fronts, low wind speed or temperature inversion phenomena, can 
occur in any location. 

Dispersion modelling covers a large range of applications: accidental release, 
emergency response, risk assessment, regulatory impact assessment, 
operational real-time and forecasting.  The end point of interest could be more 
sensitive to the pollutant concentration, the path followed by the pollutant plume 
or a combination of both.  The timescale can vary from sub-hourly or hourly to 
seasonal or an annual averaging time.  These requirements were discussed for 
each application and evaluated against timescales of changes in meteorological 
conditions.  The possible non-steady-state situations encountered by each 
application are discussed to indicate whether steady-state models are adequate 
and when their use should be questioned.  Indeed, depending on the distance 
from the source to the location of interest for a specific application, the rapidity 
of the meteorological changes and the type of application considered, the use of 
a steady-state model may not be appropriate. 

The diversity of models is discussed from simple and advanced Gaussian plume 
models to Lagrangian and Eulerian non-steady-state models.  The assumptions 
of steady-state plume models are compared to the assumptions of non-steady-
state models to identify the non-steady-state situations when steady-state 
models are not adequate.  The three main characteristic differences between 
Gaussian plume models and Lagrangian non-steady-state models are (i) travel 
to infinity versus fixed finite travel distance, (ii) not remembering versus 
remembering the previous several time steps footprint and (iii) single point wind 
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data versus three dimensional wind fields.  All could have an effect on the 
location and concentration of the highest peaks.  Any applications which are 
sensitive to the exact location and/or amount of pollutant predicted display large 
discrepancies when using a simple Gaussian plume model versus a non-steady-
state Lagrangian puff or particle model.  The shorter the time average impact 
the user is interested in, the stronger the discrepancies are. 

Steady-state models are usually appropriate for modelling pollution impact at 
mesoscale distances from a continuous-release source provided the land 
characteristics are spatially constant between the source, the receptors and the 
meteorological stations involved in the modelling, and the flow remains non 
complex.  However, when the meteorological conditions are changing rapidly at 
a given location within the domain or when they are changing spatially within 
the domain, the accuracy of steady-state dispersion modelling for predicting the 
changes in dispersion when the outcome is on a short-term timescale could be 
questioned. 

The distance from source where the conditions become non-steady-state is an 
important parameter to identify in air dispersion simulation using steady-state 
models.  It is dependent on the source characteristics but also land surface 
conditions and meteorology.  A steady-state index, described in this review, 
which is computed to quantify the difference in meteorological variability at 
source and at receptor locations could help to determine how far from the source 
steady-state conditions remain valid. 

Availability of experimental datasets which could be used for testing the 
sensitivity and the discrepancy between steady-state and non-steady-state 
models in critical non-steady-state situations are discussed.  A vast variety of 
experimental datasets is available but not all are suitable.  The most adequate 
for testing the sensitivity to changes in meteorological conditions are the long-
range tracer experiments.  However, they involve distances from source that are 
not compatible with steady-state model application, especially where short-term 
averages are of interest.  Nevertheless, a few experimental datasets have been 
identified as useful for sensitivity testing of steady-state models versus non-
steady-state models in a number of changing meteorological conditions such as 
land/sea breeze, breaking up of morning temperature inversion, passage of 
fronts and low wind speed conditions.  A list of sensitivity tests using these 
datasets are described and proposed to be developed in future work to help 
quantify the discrepancies between models and provide additional guidance 
regarding atmospheric dispersion modelling in changing meteorological 
conditions in those specific situations. 
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1 INTRODUCTION 

This review, commissioned by ADMLC, investigates the modelling of atmospheric 
dispersion in variable weather conditions and their impact on various 
applications.  A number of atmospheric dispersion models used for dispersion 
modelling applications are steady-state models, which do not allow any temporal 
changes in meteorology on the pollutant path between the source and the 
receptors of interest.  The characteristics of most of these models prevent them 
from simulating a curved trajectory or from applying any changes after the first 
time step of the pollutant release.  Changing meteorological conditions affecting 
pollutants transported between a source and the receptors of interest are non-
steady-state conditions by definition.  Depending on the application and its 
requirement, the use of a steady-state model might still be adequate, indeed in 
many situations, the distance and time scale for the pollutant to travel from the 
source to the receptors are such that the conditions can be considered quasi-
steady-state.  However, this review aims to highlight under which meteorological 
circumstances the impact on a range of dispersion applications would be 
significantly different if simulated with a steady-state or a non-steady-state 
dispersion model. 

Here is a list of key points we aim to address in this review: 

a What are the types of temporally changing meteorological conditions 
and their causes 

b What are the temporal and spatial scales of the variable weather 
conditions 

c How the changing meteorological conditions can affect atmospheric 
dispersion 

d What are the requirements of dispersion modelling for various 
applications 

e How different is the impact of dispersion applications if modelled with a 
steady-state or non-steady-state model in variable weather conditions 

f For which time scales and situations the simulation of changing 
meteorological conditions with steady-state models is appropriate 

g Are there alternative models and suitable datasets for evaluating models 
in changing weather conditions 

h Suggestion of a number of tests designed to quantify the qualitative 
discrepancies of modelling impacts 

 
Initially, changing meteorological conditions and their causes are identified and 
listed using examples taken from the literature.  The emphasis is put on 
examples showing how the changes in meteorological conditions can have 
adverse effects on pollutant concentrations.  Secondly, a variety of dispersion 
modelling applications is discussed.  Particular attention is directed to the 
requirements of those applications and their outcomes.  Historical events and 
some existing datasets are examined where relevant.  In the third part, we aim 
to identify what steady-state and non-steady-state means in terms of 
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atmospheric dispersion modelling.  Timescales of the meteorological events and 
dispersion applications are cross-referenced and a discussion of which situations 
can be considered as steady-state or non-steady-state depending on the type of 
application is developed.  Temporal changes are the focus of the report, but 
spatial changes are difficult to ignore since the path between the source and the 
receptor is the subject of interest.  Spatial changes are also discussed together 
with calm wind conditions and source characteristics. 

The choice of atmospheric dispersion models is vast.  Discussing the availability 
of suitable steady-state and non-steady-state models and field experiments 
datasets to assess the consequences of using a steady-state model for a non-
steady-state application is developed in the last section of our review.  It is 
underlined that the meteorological data input into the models whether as a one-
dimensional field or as a three-dimensional field can make a difference for the 
modelling of changing meteorological conditions on the pollutant path between 
the release and the receptors.  A series of sensitivity tests is proposed to be 
developed in future work to quantify the potential discrepancies between steady-
state and non-steady-state simulation in a selected number of changing 
meteorological conditions leading to adverse effects on pollutant concentrations 
in mostly near-field applications on short-term timescales. 

However, an exhaustive review is beyond the scope of this work since the 
number of combinations of changing meteorological conditions with type of 
atmospheric dispersion applications, and type of atmospheric dispersion models 
is unlimited. 
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2 CHANGING METEOROLOGICAL CONDITIONS 

Various types of changing meteorological conditions are discussed in this section, 
ranging from large scale cyclones to localized temperature inversion-breakup.  
Emphasis is placed on meteorological processes that lead to temporal changes in 
meteorological parameters which are important for the outcome of the 
dispersion of pollutants, such as wind speed and direction, moisture content, 
atmospheric stability, turbulence and mixed layer depth.  The relative scale of 
meteorological events has been put in perspective by a paper by Orlanski in 
1975.  He proposed a subdivision of scales that covers the entire spectrum of 
atmospheric processes.  His review shows how temporal scales and spatial scales 
are linked as it is displayed in Figure 1 extracted from Orlanski (1975).  All 
meteorological events described below can be referred to this table for an 
interpretation of their temporal and spatial scale of influence. 

The changing meteorological conditions, illustrated through a number of 
examples showing their impact on pollutant concentrations, have been divided 
into two large sections.  The first section deals with weather patterns linked 
directly to the general atmospheric dynamic.  On the other hand, the second 
section shows how the local influence of land use and topography can bring 
changes in meteorological conditions as well.  The last part of this section 
underlines the complexity of the system and how weather patterns and local 
thermal influences can interact to create changing meteorological conditions and 
lead to high pollution events locally. 

2.1 Atmospheric Dynamic 

Large scale atmospheric circulation systems such as anticyclones (or Highs) and 
cyclones (or Lows) can cause temporal changes in wind speed and direction on a 
large range of timescales from hours to days or more.  In anti-cyclonic 
situations, the changes in meteorological conditions are gradual and may be 
approximately uniform on a relatively large area (100 km2 to 200 km2).  From 
one time step to the next, the spatial scale of the temporal changes would 
usually cover an entire mesoscale domain and a steady-state model would be 
able to represent such a change.  Highs are usually moving at a lower speed 
than Lows and can also become stationary.  Fronts embedded in Lows present 
much sharper non-steady-state discontinuities and are often accompanied by 
unstable weather and heavy precipitation.  Highs and Lows events are discussed 
in the two sections below. 

2.1.1 Highs 
2.1.1.1 Light Winds Dispersion Conditions 
Anticyclones can linger over an area for several days.  An example of a 
stationary anticyclone is depicted on Figure 2 where a High can be seen centred 
on Norway for a 4-day period, January 9 to January 12, 2010.  Stationary 
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anticyclones can lead to prolonged periods of light wind speed conditions.  Under 
these calm conditions the wind direction is either poorly defined or determined 
by turbulence, resulting in rapid and random wind direction changes on a sub-
hourly time scale.  These conditions can lead to a gradual build-up of pollutant 
concentrations due to lack of pollutants being transported outside the region of 
interest.  The travel time between the source and the receptor and the memory 
of the previous time step are both important factors to consider in these 
situations.  Both are characteristics of non-steady-state dispersion conditions, 
even though the meteorology itself appears as quite steady on hourly (or even 
longer) basis. 

In such conditions, there is a diurnal change in mixing height, the top of the 
boundary layer.  It is low at night when the ground cools down and increases in 
the morning to reach a peak height at mid-day by the increase in turbulence due 
to solar radiation heating of the ground.  A number of advanced steady-state 
models, such as AERMOD (US EPA, 2003) or ADMS (Davies et al., 2007) can 
usually simulate this type of change in meteorological conditions, since it 
corresponds to progressive changes. 

2.1.1.2 Subsidence Inversion 
Anticyclones generate subsidence over large areas.  The air is heated by 
compression creating an elevated temperature inversion known as a subsidence 
inversion.  Subsidence inversions in stationary anticyclone situations are 
persistent and allow build-up of pollutants over a long period of time. 

Scire and Chang (1991) studied such occurrences, using field measurements 
from the South-Central Coast Cooperative Aerometric Monitoring Program 
(SCCAMP 1985).  High ozone pollution events were shown to be correlated with 
peak 850-mb temperatures, strong vertical stability and overall limited mixing 
conditions, especially in the months of September and June (see Figure 3, Table 
5 extracted from Scire and Chang, 1991). 

Previous studies by Smith (1984) and Moore and Reynolds (1986) also found 
that high ozone concentrations in Ventura County were associated with a high 
temperature at 850mb and compounded by weak sea-breeze conditions bringing 
even colder air under the inversion.  

In the study of Particulate Matter (PM) pollution events over Northern Greece 
(Triantafyllou, 2002), the highest frequency of pollution events in the area 
occurred during a high-pressure system covering the Balkan area.  Weak winds 
are observed on the surface and local thermal circulations are developed.  Such 
conditions result in very stable conditions and the accumulation of pollutants.  
This situation of subsidence inversion especially occurs during the cold period of 
the year, and leads to high local concentrations of PM. 
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2.1.2 Lows and Fronts 
More abrupt changes in meteorological conditions over short periods of time can 
occur during frontal passages.  Fronts are usually associated with Lows, which 
are typically formed by a warm front followed by a cold front.  Cold fronts and 
warm fronts result in marked changes of wind direction, wind speed, 
temperature and moisture.  Fronts also affect the vertical structure of the lower 
troposphere and create vertical wind shear.  Fronts are associated with changes 
of cloud cover, precipitation and instability.  An example of a passage of a Low is 
shown on Figure 4, it moved from the South West to the North East area of 
Europe.  It was located north of the Canary Islands on February 27, 2010 at 
00UTC.  It reached the west coast of France on February 28, 2010 at 00UTC 
causing large scale flooding and damage due to strong wind and precipitation 
and then moved across the north part of Germany and Finland during the two 
following days. 

2.1.2.1 Spatial Gradients 
Fronts are not exactly sharp discontinuities, but rather fairly narrow transition 
zones with sharp spatial gradients in meteorological conditions.  The transition 
regions associated with fronts can range from about 50 km up to a couple of 
hundred kilometres.  If a front passes over a dispersion modelling domain, the 
conditions in the domain are not steady-state: temperature, cloud cover and 
moisture spatial variability at the front cause horizontal gradients of mixing 
heights between the sources and receptors, while wind shifts across the fronts 
define a change in plume trajectories also between the sources and receptors.  
The meteorological conditions change much faster as the Low centre passes 
above an observer (within hours) than if the observer is located at 50km or 
more away from the centre where the conditions can stay uniform for a day or 
more and over hundreds of kilometres. 

2.1.2.2 Propagation 
The spatial gradients move as the front makes its way across the domain.  Cold 
fronts can move up to twice as fast and produce sharper changes in weather 
than warm fronts.  Since cold air is denser than warm air, it rapidly replaces the 
warm air preceding the boundary.  If a cold front catches up to a warm front, it 
creates an occluded front, which may increase storm intensity in the area.  As it 
is shown on Figure 4, the warm front and cold front were completely separated 
on 28 February, while on 29 February the cold front caught the warm front, 
creating an occlusion.  Front propagation and occlusion instability are non-steady 
phenomena. 

2.1.2.3 Precipitation 
A cold front commonly brings a narrow band of precipitation that follows along 
the leading edge of the cold front.  These bands of precipitation are often very 
strong and can bring severe thunderstorms.  In British winter and autumn, cold 
fronts rarely bring severe thunderstorms, but are known for bringing heavy and 
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widespread rainstorms.  In the UK, rapid change of weather occurs at all 
seasons.  The west of the country is usually wetter than the east.  Extremes of 
weather occur in the mountains of Scotland, Wales and northern England.  At 
altitudes exceeding 600m, annual rainfall can exceed 1,500 mm and can reach 
as much as 5,000 mm in some places. 

Warm fronts on the other hand are associated with extensive cloud cover and 
sometimes stratiform rainfall but typically not deep convective showers. 

Convection, whether dry or precipitating, often associated with changing winds, 
is non-steady-state and affects dispersion very much.  Patchy cloud cover 
creates gradients of solar radiation, affecting turbulence and mixing heights, 
while rain showers form pockets of wet deposition.  In opposition, stratiform 
cloud cover and stratiform precipitation however might be pretty much steady-
state over the area they cover. 

2.1.2.4 Examples 
A number of examples can be found in the literature showing high pollution 
events associated with the passage of a front. 

Lopez et al. (2002) have shown that the Mexico Basin periodically experiences 
windblown dust events that cause exceedances of the national ambient air 
quality standard for PM10 in the densely inhabited areas of the Mexico City 
Metropolitan Area.  Those high dust episodes are associated with moderate to 
high winds occurring in early spring when temperatures are high and humidity is 
low for this region.  

In the study performed by Triantafyllou et al., 2002 over the Kozani area in 
Northern Greece, about a quarter of the high pollution episodes were associated 
with high wind speed conditions due to the passage of a cold front.  The high 
winds resulted in dust re-suspension and high concentrations of particulate 
matter. 

The frequent passage of the “Sharav” cyclones over the Tel Aviv area during 
spring causes natural dust outbreaks with extreme values that result in a much 
higher PM10 annual mean in Tel Aviv than in other larger cities in Asia and 
Europe (Dayan et al., 2005) 

The passage of a front is also often associated with precipitation which affects 
pollution through wet deposition.  Dramatic outcomes such as potent acid rain 
that burns lawns and tree leaves are possible results of such change in 
meteorological conditions when the front reaches an area with high sulphur 
dioxide emissions from industries.  In 1978 in Wheeling, West Virginia, rainfall 
acidity was measured at a PH of 1.5-2, the most acidic rain recorded yet, and 
5000 times more acidic than normal rainfall (which has a PH ~5). 

Dayan and Lamb (2007) have shown how the magnitude of sulphate deposition 
varies spatially across a region and temporally by season and from year to year.  
However inter-annual variations of precipitation are most likely linked to larger-
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scale variations in atmospheric circulation rather than mesoscale and synoptic 
scale circulations such as fronts and cyclones (Dayan and Lamb, 2005). 

2.1.3 Thunderstorms and Squall Lines 
A squall line is most simply defined as any line or narrow band of active 
thunderstorms. The line can extend hundreds of kilometres in length and last for 
several hours.  Because of their long-lasting and well organized convective 
nature, squall lines are frequently observed to produce heavy rainfall and severe 
weather events.  

One of the characteristics of convective showers, thunderstorms and squall lines 
is the gust front or outflow boundary.  Outflow boundaries are the result of cold 
downdrafts that spread out laterally at the Earth’s surface.  For isolated 
thunderstorms, outflow boundaries can occur over small spatial and temporal 
scales (a few kilometres over a couple of hours) while squall line outflow spreads 
out over larger regions (of the order of 200 kilometres) and lasts up to 24 hours. 

Outflow boundaries are typically associated with temperature drops, pressure 
rises, and wind shifts as the boundary passes an observer.  The quick changes in 
meteorological conditions during the passage of the outflow boundary 
characterize a non steady-state situation. 

Thunderstorms and squalls are of course highly convective weather events which 
not only affect dispersion by their outflows, but also by their vertical motions, 
unstable conditions and rainfall, all of which are very much non-steady-state and 
affect pollutant transport and dispersion. 

An example of such outflow has been observed and described by Bowen (1996).  
Figure 6 (Figure 2 from Bowen, 1996) displays vertical profiles while Figure 5 
(Figure 3 from Bowen, 1996) shows time series of meteorological variables such 
as winds, temperature, dew point, sigma-, sigma- etc…, during the passage 
of a thunderstorm outflow.  The conditions before the outflow episode are 
unstable with strong solar radiation, light winds and large values of horizontal 
and vertical turbulence at both 12 metres and 92 metres above ground (Figure 
5).  When the outflow episode arrives, the sudden change in wind direction is 
accompanied by a large increase in wind speed at 120 metres (from 3.8 m/s at 
12.30 LST to 16.4 m/s at 14.30 LST) as shown on Figure 6 b.  At the same time, 
the turbulence drops significantly.  The passage of the outflow lasts just a few 
hours. 

2.2 Thermally Induced Circulations 

Other changes in meteorological conditions are associated with differential 
thermal forcing at the earth surface.  Thermally induced circulations arise from 
thermal gradients generated by spatial heterogeneities of surface characteristics.  
Differential heating notably occurs between land and water boundaries, sloped 
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surfaces and valleys, urban and rural areas, wet and dry soil, snow covered and 
snow free areas, cloudy and sunny regions. 

The related weather patterns vary throughout the day, are localized and can 
move spatially within the domain.  These situations are non-steady-state.  
Examples below show how the thermally driven (re)circulations can modulate 
pollutant concentrations. 

These thermally-driven changing meteorological conditions can become locally 
dominant when large-scale winds are weak, such as in high pressure anti-
cyclonic conditions. 

2.2.1 Land-Sea Breeze 
Differential heating over land and over sea (owing to the higher heat capacity of 
water) results in pressure gradients and land-sea breeze circulations at coastal 
locations.  During the day, the land heats up faster than the ocean, first creating 
an offshore flow above the surface (at 100m or so), raising surface pressure 
offshore, which in turns generates a surface onshore flow.  After that, the 
continuous heating over land keeps the sea breeze coming, first directly onshore 
(i.e. perpendicular to the coast) but soon after onset, the winds veer to the right 
with time in the Northern Hemisphere owing to the Coriolis effects (e.g. a 
northerly sea breeze at the onset turns into an easterly sea breeze by dusk).  
The larger the temperature contrast and pressure gradient, the stronger the 
associated sea breeze circulation: sea breezes (onshore) are at their maximum 
during hot spring days and early summer days when the seas have not warmed 
up yet.  Conversely, in late autumn and early winter, the seas have not cooled 
too much yet and strong land breeze (offshore winds) can develop, with winds 
flowing from the cold land towards the warmer seas, especially at night when 
the thermal contrast is the strongest. During low synoptic wind periods, a land-
sea breeze recirculation pattern can develop when the ocean temperature is 
lower than daytime land temperatures and higher than night-time land 
temperatures. Daytime onshore winds are then replaced by (generally) weaker 
offshore winds at night.  Pollutants are then flushed offshore at night and 
trapped in the stable marine boundary layer, and brought back in the morning 
by the onshore winds thus enhancing coastal pollution. 

The sea breeze fronts propagate inland during the course of the afternoon and 
can affect regions up to 50km from the coast in mid latitudes, although their 
effects are generally felt the most within 10 km of the coast, depending on 
topography, degree of urbanism and large scale circulation.  Sea breeze 
impinging on higher terrain or against large scale offshore flow, or converging 
sea breeze from both sides of a peninsula (e.g. Florida, Cornwall) generate a 
zone of convergence and may cause clouds, convective rain showers and 
thunderstorms.  Sea breeze circulation is common over Southern England and 
East Anglia (Simpson, 1994; Damato et al, 2006). 

It is also important to note that a sea-breeze circulation is in essence a three-
dimensional circulation, with an onshore surface flow and offshore flow aloft 
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during the day.  Many steady-state models, using only a single 10m surface 
wind as input data, will fail to represent a sea-breeze circulation, because of a 
non representation of the vertical structure and the spatial variability. 

Levy et al. (2008) attempted to quantify the coastal recirculation effect on air 
pollutants by using a five year dataset of 30-minute averages of meteorological 
and air pollution data at 29 monitoring stations located at three air sheds along 
the Israeli coastline of the East Mediterranean Sea and at inland locations.  In 
their study the highest concentrations of primary pollutants such as NOx and SO2 
were measured whenever the daily average wind speeds were low, and 
particularly under poor ventilation conditions (i.e. low wind speeds and high 
recirculation factor).  A recirculation factor is indeed objectively quantified in this 
paper (Levy et al, 2008) based on the ratio of L (discrete integral quantities of 
“resultant transport distance”) and S (net vector displacement, “wind run”), 
while for other pollutants such as O3, higher values were found for both high and 
low recirculation factors.  High ozone concentrations may have possibly resulted 
from long-range transport or coastal recirculation. 

Leach and Patrinos (1992) showed how coastal circulations could influence local 
flow fields and deposition patterns.  The synoptic conditions expected in the area 
they studied (Washington DC, USA) were modified by the coastal circulations 
and the expected deposition pattern was shifted to the north of the city. 

A study by Speer and Leslie (2000) studied the atmospheric conditions which led 
to smoke pollution over the Sydney area due to a prescribed fire located north of 
the city centre.  The very stable atmosphere, due to a formation of surface 
temperature inversion, associated with a succession of sea breezes and land 
breezes created an inter-regional circulation of smoke and accumulation of 
particulate pollution in the eastern part of the metropolitan area.  Light wind 
conditions are usually good conditions for prescribed burning to avoid wild 
spreading of fires, but the inter-regional recirculation in this case created a 
major pollution impact over the Sydney area. 

2.2.2 Anabatic and Katabatic Winds 
Katabatic wind is the generic term for downslope winds flowing from high 
elevations of mountains, plateaus and hills down their slopes to the valleys or 
planes below. 

Katabatic winds can be locally driven by cooling denser air flowing down the 
slope by gravity.  For example cooling during night-time can cause a katabatic 
flow in the early morning when the cold air produced at high elevation starts 
flowing and accelerating down the topography.  Katabatic flows slumping down 
from uplands may be funnelled and strengthened by the landscape and are then 
known as mountain gap wind, mountain breeze or drainage wind.  Mountain 
breezes are part of a local wind system.  When the mountainside is heated by 
the sun, the mountain breeze breaks down, reverse and blow upslope.  These 
winds are known as valley winds or anabatic winds. 



 

10 CONTRACT REPORT FOR ADMLC 

The gentler katabatic flow down hill slopes can produce frost hollows.  This may 
occur after a dry, clear and cold night when cold air drains down neighbouring 
slopes into a localized pocket from which it is slow (or unable) to escape.  
Rickmansworth, a very well know frost hollow in UK, recorded the largest daily 
temperature range in England when, on 29th August 1936, the temperature 
climbed from 1.1°C at dawn to 24.9°C within 9 hours!  Other well-known frost 
hollows in the UK are the Welsh Marches, the Glens of Scotland, the Pennine 
Valleys, the Vale of Evesham, Shrewsbury and Redhill.  Frosts are often seen 
here earlier in the autumn and later in the spring than on the surrounding higher 
land (BBC).  Note that where cold air can pool, dense gases may also be able to 
accumulate. 

Katabatic winds can also occur on the lee side of a mountain situated in the path 
of a depression.  Föhn type winds (such as the Chinook or the Helm wind) are 
known for their rapid temperature rise, their desiccating effect and the rapid 
disappearance of snow cover.  These winds are typically found in the lee of large 
mountain ranges but can also occur in the lee of less marked mountains such as 
the Helm-winds in the Cross Fell Range in Cumbria. 

2.2.3 Mountain and Valley Winds 
2.2.3.1 Flow Recirculation in Mountain-Valley Wind Systems 
In mountainous terrain, night-time downslope flows converge into valleys and 
make their way downstream, bringing (usually) fresh air downslope.  Conversely 
during the day, upslope flow carries air up-valley.  This thermally-driven terrain-
controlled circulation reverses twice a day, soon after sunset and sunrise. 

Baumbach and Vogt (1999) studied pollution trends in Freiburg, a town located 
in a valley in the Black Forest area in Germany.  They showed how the 
mountain-valley wind system brings relatively unpolluted air masses from the 
Black Forest to the town at night and in the early morning hours during summer 
high-pressure weather conditions.  They also showed how this cleaning effect 
fails to work during stable weather conditions with low wind speeds.  Indeed 
under those conditions, it is the polluted air masses which have flowed into the 
Black Forest during the day that are transported back to Freiburg with the 
mountain wind in the evening and at night.  Under these stable conditions, no 
fresh air comes in and recirculation increases the pollutant concentrations over 
the town.  This example shows the importance for the model to have a memory 
of the previous several time steps to be able to predict correctly the pollutant 
concentrations over the town during such non-steady-state situations. 

2.2.3.2 Shading Effects 
Differential shading in complex terrain areas creates gradients of temperature 
and modifies local mountain-valley flow patterns (e.g. Maffeis et al, 2001).  
Differential shading effect also arises over flat terrain between cloudy and clear 
sky areas. 
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Additionally, differential shading creates non-homogenous dispersion, with 
unstable conditions developing earlier in the morning on the east-facing slopes 
and lasting later on the west-facing slopes.  Finally, photochemical reactions 
develop differently in cloudy and sunny areas, most notably affecting ozone 
production. 

2.2.4 Radiation Temperature Inversions 
A temperature inversion may take place near the surface or higher in the 
troposphere.  The latter type of inversion, aptly called subsidence inversion, is 
caused by large scale subsidence and was discussed in Section 2.1.1.2.  A 
surface or radiation inversion is the result of surface cooling due to radiative 
heat loss during the night under clear sky conditions with low wind speed (and 
hence low mechanical turbulence).  This type of inversion usually dissipates as 
the sun heats the ground in the morning, which can then lead to what is known 
as inversion-breakup fumigation (see Section 2.2.6.1). 

However sometimes the morning inversion fails to break up at dawn and 
remains for several days, trapping pollutants near the ground and creating acute 
pollution episodes.  These long inversion episodes are typically associated with a 
stationary high pressure area, weak winds near the surface, high humidity and 
persistent fog.  The air being thermally stable, there is very little vertical motion, 
thus cold and very humid air generates fog at night.  The fog, in these cold 
conditions, persists during the day, which prevents the solar radiation breaking 
the inversion layer by warming the ground in the morning and dispersing the 
pollution.  These situations are considered non-steady-state because despite the 
winds being calm and the vertical turbulence in the layer quite stable, a build-up 
of material emitted under the inversion happens, leading to a non-steady-state 
situation.  Steady-state models having no memory of the previous hour can not 
in theory simulate a build-up of material each hour starts with a clean air 
domain.  Developers of some advanced steady-state models such as ADMS-4 
have incorporated an additional module, for special treatment of ‘calm’ wind 
conditions, to palliate to this limitation (ADMS-4 User guide, 2010). 

In the last two centuries, the worst air pollution episodes in London have 
occurred under radiative inversion conditions as described above, characterised 
by calm winds and cool, humid air, which developed into fog near the ground.  
Pollutants emitted in the stable layer under the inversion were mixed with fog to 
create what is called “smog” (combination of smoke and fog).  For instance in 
1952, the smoke from coal burning got trapped under a five-day temperature 
inversion creating a deadly “black fog”.  Similar incidents were reported in 
London in 1956 and 1962.  Each of them claimed from 700 to 4000 lives.  A 
similar deadly event occurred in 1930 in the Meuse Valley (France) when 
pollution became trapped in a narrow valley.  In the United States as well, such 
events have been recorded with a temperature inversion lasting six-days in 
Donora, Pennsylvania in 1948 and a three-day temperature inversion over 
Thanksgiving week-end in 1966, in New-York City, causing illness and deaths of 
a number of people. 
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However, in certain situations, such meteorological conditions might be 
beneficial and not detrimental to air quality.  For example, on December 11, 
2005, an accidental explosion generated massive fires at a Hertfordshire oil 
depot (Buncefield fuel depot), but thanks to a strong inversion layer, the hot 
elevated plume never reached the ground. Instead the lofted plume and its 
products were trapped at a moderate altitude.  The plume emitted from the fire 
pierced the thin wintertime boundary layer and was injected into the free 
troposphere at higher altitudes.  No high PM10 concentrations were recorded at 
any of the many air quality stations in the vicinity of the explosion.  In addition, 
the study of the health impact of this fire, performed by Hoek et al, 2007, shows 
that acute public health impact was relatively small.  At the time of the 
explosion, local temperatures were around freezing, wind-speeds were low and 
anti-cyclonic conditions prevailed (Jones et al., 2006).  On the 2nd day after the 
explosion, the strength of the fires diminished and the plume became more 
narrowly defined because of an increase in wind speed and a more consistent 
wind direction from the North East.  Ground-level concentrations of a range of 
pollutants remained low to moderate over local, regional and national scales.  
The conditions of the event (high plume buoyancy and favourable meteorological 
conditions) meant that the plume was trapped aloft with minimal mixing to the 
ground (Targa et al., 2006).  If such an event had happened into a well 
developed summer boundary layer, the outcome would have been very different 
and might have caused severe air quality degradation owing to PM10 (Vautard et 
al, 2007). 

2.2.5 Urban Heat Islands 
The urban heat island effect is due to the presence of a city big enough to 
generate an atmospheric temperature larger than its surroundings, owing to 
anthropogenic heat release and heat storage in concrete buildings, roads and 
roofs.  It creates meteorological changes in the area and impacts the 
atmospheric dispersion of pollution.  Heat island magnitudes are largest under 
calm and clear weather conditions, often found during anti-cyclonic weather 
(Wilby, 2003), and especially at night, when it is common to observe neutral or 
unstable conditions over a city and very stable conditions outside the urban 
area.  The location of the thermal maximum has been observed to change with 
wind direction (Graves et al, 2001). 

Not only do heat islands create spatial heterogeneity in the meteorological 
conditions but they also create transient “city breeze” circulations which are by 
nature non-steady-state (they develop overnight and abate by mid-morning). 

Nielson-Gammon (2000) compared two model simulations over the Houston 
metropolitan area.  One simulation included the city of Houston; in the second 
simulation, the city characteristics were removed and changed to rural 
characteristics.  During the afternoon, winds and temperature patterns were the 
same in the two simulations over most of the domain except where the city was 
located.  Over Houston, the temperature was up to 2 degrees Celsius warmer 
than in the surrounding rural area.  A convergent “city” breeze developed over 
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the metropolitan area in the simulation including Houston and not in the other 
simulation. 

Heat island circulation and sea breeze can compound each other’s effects in 
dramatic fashion, such as in Chicago, where the sea breeze from the Great 
Lakes clashes with the city breeze over Chicago forming a cold front of sorts and 
causing severe thunderstorms over the city (WGN Weather, 2008). 

Similar heat island effects can be found over lakes where industrial facilities 
discharge the water used for cooling purposes.  

2.2.6 Fumigation 
2.2.6.1 Inversion-Breakup Fumigation 
Pollutants emitted above a radiation temperature inversion are trapped in the 
upper layer of the atmosphere during the night and isolated from the ground.  
As the solar radiation heats the ground in the morning the temperature inversion 
layer breaks up and turbulence within the now deeper boundary layer brings the 
pollutants aloft down to the ground, in a process called ‘inversion breakup 
fumigation’. 

Zhang and Rao (1999) have shown that ozone and its precursors trapped aloft in 
the nocturnal residual layer can influence ground-level ozone concentrations on 
the following morning as the surface-based inversion starts to break up.  Figure 
7, extracted from Zhang and Rao (1999), shows vertical temperature and ozone 
profiles in New Haven, Connecticut, at 5am and 3pm, and in Manassas, Virginia, 
at 8am and 12pm.  Ozone has higher concentrations aloft (above the inversion 
layer) in the early morning hours and the concentrations become larger on the 
ground in the afternoon after the inversion layer breaks up.  A one-dimensional 
model simulation supports their observation that the vertical mixing process 
contributes significantly to the ozone build-up at ground level in the morning as 
the mixing layer starts to grow rapidly.  When the top of the mixing layer 
reaches the ozone-rich layer aloft, high ozone concentrations are brought down 
into the mixing layer, rapidly increasing the ground-level ozone concentrations. 

A study by Anquetin et al (1999) shows the build-up and destruction of the 
inversion layer in a valley.  It shows the influence of the season on the building 
of the inversion layer at night and its destruction in the morning. 

Other experiments studying fumigation effects were conducted in complex 
terrain areas.  For example, the tracer experiment in the Brush Creek Valley in 
Colorado, US in July-August 1982 described by Whiteman (1989) and Orgill 
(1989) shows the effect of morning fumigation when the convective boundary 
layer grows upward from the heated valley slopes.  This experiment, staged in a 
mountain-valley area, was strongly dependent on the asymmetry of sun 
exposure of the sides of the valley at sunrise.  Muller and Whiteman (1988) ran 
similar experiments to study the breakup of a temperature inversion layer in 
Switzerland’s Dischma Valley on August 11, 1980.  Allwine et al. (1992) also 
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studied the formation of a cold air pool in a valley, isolating pollutant from the 
ground at night, followed by fumigation in the morning. 

2.2.6.2 Shoreline Fumigation 
An illustration of shoreline fumigation is provided in Figure 8, extracted from 
Luhar and Sawford (1995).  Shoreline (or coastal) fumigation occurs when a 
plume emitted at the coast above the marine boundary layer is blown onshore 
by the sea breeze and encounters a growing land Thermal Internal Boundary 
Layer, known as the TIBL.  The plume is initially travelling over land in a nearly 
non-turbulent unmodified onshore flow with little diffusion.  Subsequently, the 
plume is intercepted by a growing turbulent boundary layer and undergoes rapid 
vertical mixing.  This can lead to high ground-level concentrations of pollutants. 

Sawford et al (1996) studied shoreline fumigation under sea breeze conditions in 
the vicinity of the Kwinana power station in Western Australia.  This region is 
Western Australia's main site for heavy industry with most installations 
concentrated on a strip of land extending about 10 km along the shoreline.  
Wind, turbulence and temperature structure of the boundary layer, surface 
radiation temperature over both land and sea, as well as concentrations of CO2, 
O3, NO2 and NOx, were measured during the 9-day experiment (between 
January 26 and February 6, 1995), dubbed the Kwinana Coastal Fumigation 
Study.  Temperature and wind structure at the coast and further inland were 
measured at approximately two-hour intervals.  Plume sections were measured 
near the Kwinana Power Station stacks and up to about 5km downwind.  This 
study showed that during most of the 9 days the onshore flow was neutrally 
stratified but essentially non-turbulent.  The growth of the TIBL in this neutral 
layer was rapid and limited by inertial rather than buoyancy forces.  It was also 
found that there was a significant wind direction shear between the 10-m level 
at Hope Valley (approximately 3km inland) and the bulk of the TIBL.  This shear 
had an important effect on the location of the ground level impacts of the 
plumes.  The plume from the lower of the two stacks studied was clearly 
observed to fumigate regularly throughout the study within a few kilometres 
from the stack, while the plume from the taller stack generally stayed above the 
TIBL for the periods observed. 

The results from this study show the importance for a model to be able to 
represent temporal changes in meteorological parameters for an accurate 
prediction of local pollutant concentrations.  It also underlines the importance of 
properly modelling pollutant accumulation. Data from the experiment might be 
available from Australian Commonwealth Scientific and Industrial Research 
Organization (CSIRO) for model validation purposes.  

2.3 Combination of Changing Meteorological Conditions 

A combination of the characteristics responsible for local change in 
meteorological conditions such as an urban area, located along the coast on one 
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side and surrounded by mountains on the other side, can amplify the 
development of changing meteorological conditions.  Indeed, many studies have 
shown that for coastal cities which are heavily populated and surrounded by 
mountains, a combination of coastal recirculation, topographical settings, Urban 
Heat Island, and large-scale synoptic flow, has a strong effect on air quality. 

For instance, studies all over the Mediterranean Basin show that during the 
summer season the combined effects of the sea breeze, local topography and 
synoptic flow often results in elevated levels of both primary and secondary 
pollutants (i.e. Clappier et al., 2000 study of the city of Athens in Greece). 

Other meteorological combinations are also discussed in this section. 

2.3.1 Combination of Land-Sea Breeze and Subsidence Inversion 
On days where the Pacific anticyclone situated off the California coast creates 
large scale subsidence and a temperature inversion over Los Angeles (LA), 
severe smog develops over the city.  When the afternoon sea breeze then kicks 
in, polluted air from LA spreads towards many inland locations, up to 60km away 
from the town.  The air is warm enough to prevent cloud formation and plenty of 
sunshine is available to promote photochemical reactions (Simpson, 1994).  The 
meteorological conditions leading to such events are clear skies and strong solar 
radiation, a critical balance between synoptic forcing and local sea breeze 
systems, which enhance pollution recirculation.  In the 1940s, LA, California, 
became one of the first cities in the U.S. to experience severe air pollution 
problems because of this type of situation.  The most serious pollution events in 
LA are related to land- and sea-breeze reversal, which gives a mechanism for a 
complete layer of polluted air to be maintained at high concentration and 
returned to the same locality 24 hours later (Simpson, 1994). 

2.3.2 Combination of Land-Sea Breeze, Mountain-Valley Winds and 
Subsidence Inversion 

Chang et al. (1989) and Kurita et al. (1990) studied a combination of land/sea 
breeze, and mountain/valley winds under synoptic-scale high pressure which 
created steady onshore winds, strong thermal low and subsidence inversions, 
associated with high ozone concentrations reaching inland mountainous regions 
(150km downwind of Tokyo) in the early evening.  In the city, maximum 
concentration peaked in the early afternoon, when the sea breeze circulation 
developed. Under the combination of the above conditions, city polluted air was 
brought inland towards the mountain areas as shown in Figures 9 and 10, 
extracted from Kurita et al. (1990). 

2.3.3 Combination of Land-Sea Breeze, Drainage Flows and 
Temperature Inversion on Strong Anti-cyclone Days 

The city of Hobart, Australia is located in a well-defined valley with the Derwent 
Estuary running through its axis.  The valley axis is mostly aligned in a north-
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west to south-east orientation with Mt. Wellington, the dominant topographical 
feature, approximately seven kilometres to the south-west of Hobart.  Hobart is 
documented to have two dominant mesoscale wind flows, namely a sea breeze 
and katabatic drainage flows.  The dominant daytime wind regime during winter 
is a drainage flow down the valley axis referred to as the “mountain wind”.  This 
wind increases in strength and frequency with distance down the valley.  The 
mountain wind is fed by down-slope drainage winds (katabatics flows) flowing 
off the valley walls to the Estuary.  Light winds are generally associated with the 
mountain wind.  High concentrations of particulate pollution in Hobart are 
frequently associated with the occurrence of highly stable atmospheric conditions 
and light winds that are unable to disperse pollutants.  These conditions are 
linked to the passing of an anti-cyclone.  Clear skies during calm wind events at 
night result in the cooling of air in the upper slopes of the Derwent Valley.  The 
air slowly drains down the valley (katabatic winds) entraining pollutants within 
them.  As a result, relatively high pollutant concentrations are likely to be found 
in topographic hollows and basins, and on low-lying land often located near the 
coast. 
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3 ATMOSPHERIC DISPERSION APPLICATIONS 

Atmospheric dispersion modelling is used to estimate the concentration of 
pollutants at various distances and directions from a source for a wide variety of 
applications, ranging from accidental releases to regulatory permitting 
applications.  A number of examples are discussed in this section. 

3.1 Accidental Releases 

In the event of a release of toxic material into the atmosphere, an accurate 
forecast of the initial plume transport and dispersion must be obtained within 
minutes to hours of the accident.  Ground level air concentrations, and also 
deposition and irradiation from radioactive plume if relevant should be simulated 
by atmospheric dispersion models.  Depending on the size and conditions of the 
release, it can also develop into a large scale event.  And so, accurate modelling 
of the initial release and dispersion is not only necessary for short-term local 
predictions but also for longer term forecasts.  Simulations of long-range 
transport trajectory over days to weeks then need to be provided. 

Simple models such as steady-state models and simple meteorology may be 
enough for reporting results soon after the accident and at a short distance from 
the source if in conditions of non-zero wind speed and non changing 
meteorological conditions.  However, in near-field situations where changing 
meteorological conditions occur often enough and have an impact on decision 
making in case of an accident, it would be more appropriate to use a non-
steady-state model run with simple meteorology.  In such situation, there may 
be insufficient time to identify whether or not the situation is steady-state and to 
decide which model to use.  Long-range transports of pollution are certainly not 
steady-state situations and forecasting of such transport requires the use of 
models which remember the previous hour concentration and can take into 
account any change in meteorological conditions between the source and the 
receptors.  As the release duration and extent of dispersion increase, the ability 
to simulate the spatial and temporal variability of meteorological conditions 
becomes more important.  The transition between necessity for simple modelling 
and more complex modelling is not so easy to determine.  For distances smaller 
than a transitional distance and timescales of a few hours, simple modelling 
could be adequate if the local spatial conditions are not too complex and the 
meteorological conditions are slowly changing.  As soon as the distance travelled 
by the pollutant becomes greater than the transitional distance and the 
timescale increases to days or more, the use of a non-steady-state model that 
can simulate spatially and temporally varying meteorological and dispersion 
conditions would be recommended to adequately represent the path and 
duration of exposure.  A question remains about how to determine the 
transitional distance where the conditions change from steady-state to non-
steady-state.  This distance varies and needs to be defined for each specific 
application.  The computation of a steady-state index, dependant on local 
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meteorological characteristics, as described in section 4.4.3 may help to 
evaluate the transitional distance. 

The most important issue about an accidental release is the availability of 
meteorological datasets at the moment of the accident and in the following 
hours.  If the accidental release happened at an industrial site, monitoring and 
forecasting of wind speed, wind direction and other meteorological parameters 
may be recorded on site and can be used for the dispersion modelling 
simulation.  However, accidental releases may occur during the transportation of 
a pollutant and in such a scenario, meteorological data is more difficult to 
acquire in a relatively short timescales following the accident and required for 
dispersion simulation. 

Examples of short-range and long-range accidental releases are discussed 
below. 

3.1.1 Short Range Accidental Releases 
Because of the acute health risks, especially in the close vicinity and immediate 
aftermath of an accident, it is paramount to model the location of the plume and 
duration of exposure within a degree of accuracy required to put an emergency 
response strategy together, including warning and evacuation of population and 
the safe dispatch of emergency teams.  Employees working in facilities with 
possible risk of chemical releases are usually trained to stay upwind when 
evacuating for such an accident.  Short oscillation of the wind direction, pooling 
and stagnation, structure confinement and building downwash, can all make the 
difference between life and death, for highly toxic releases.  It is therefore 
important to have a high resolution grid and high resolution meteorology, both 
in time and space, to be able to predict the location of the plume and determine 
exposure accurately. 

An accurate description of the release is also essential.  Depending on the 
circumstances, the dispersion model should be able to handle time-varying 
emissions, buoyant, neutral, or dense gas releases, point sources, jet-like 
sources, area sources or volume sources. 

Modelling of physical and chemical reactions may also be required, such as 
evaporation, dual phase releases, and chemical transformations. 

3.1.1.1 Toxic Spills 
Toxic spills of Ammonia, HF, or H2S are examples of industrial accidental spill 
releases.  Several modelling phases need to be addressed from the spillage itself 
(spills, dual-phase jet, etc), to the short-range dispersion (heavy gas dispersion 
when the gas is concentrated, neutral gas dispersion once the heavy gas is 
diluted enough), and possibly up to long-range dispersion. 

Hydrogen fluoride is used by some refineries in the manufacture of unleaded 
gasoline.  Amoco Corporation arranged with the Department of Energy to spill 
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1000 gallons in two tests at the HazMat Spill Center (formally called the National 
Spill Test Facility) near Mercury, Nevada, to study HF dispersion after a spill.  
This series of gas dispersion experiments are known as the Goldfish test series 
(Blewitt et al, 1987a, b), which can be and have been used for model validation 
(e.g. Hanna et al, 1991). 

An actual accidental HF spill took place in 1987 at Marathon Corporation refinery 
at Texas City, Texas.  A crane accidentally dropped equipment on top of a 
pressurized tank containing liquid HF.  An estimated 36,000 lbs of hydrogen 
fluoride evaporated and escaped from the tank during the first hour after the top 
pipes were sheared plus perhaps another 4000 lbs during the second hour 
before the tank reached atmospheric pressure and was isolated.  The fluoride 
plume was described as 2 to 3 miles long and 0.5 to 1 mile wide.  The wind was 
from the SE at 5 to 10mph.  Technical details on effects of community exposure 
to hydrogen fluoride during the Texas incident have been published in a paper 
by Dayal et al. in 1992. 

Ammonia is one of the most commonly transported hazardous materials, 
especially in agricultural areas where it is used as an important fertilizer.  It is 
also a common refrigerant and is frequently used in industrial areas.  Ammonia 
is usually produced from natural gas, so it is also found in large quantities near 
petroleum producing areas.  It is shipped in ships and barges, rail tank cars, and 
tanker trucks.  Anhydrous ammonia is normally shipped in liquefied form 
(refrigerated on barges, pressurized on smaller carriers) and immediately 
vaporizes when lost.  The major hazards associated with ammonia are from the 
toxic effects on breathing and caustic burns caused by vapour, liquid, or 
solutions.  In spite of its low molecular weight relative to that of air, ammonia is 
able to form denser-than-air mixtures on release to the atmosphere.  Depending 
on process conditions, ammonia can be released as a neutrally buoyant gas or 
as a heavier-than-air vapour cloud.  A single phase release of gaseous ammonia 
may occur when ammonia is released from a small hole in a container where 
ammonia is stored in gaseous form.  A two-phase release occurs when ammonia 
escapes from a pressurized vessel (where ammonia is stored in its liquefied 
form).  In this case, the release cloud is typically denser than air.  Besides 
storage conditions, meteorological conditions also affect how ammonia clouds 
evolve.  Ammonia vapour can be readily advected and dispersed after an 
accidental release.  However, during stable conditions, an ammonia cloud can 
linger around the spill area for quite a long time.  Dispersion modelling of such 
an accident must be capable of handling both stagnant and windy conditions.  
Additionally, anhydrous ammonia may cause water vapour to condense and 
disperse as a dense aerosol close to the ground.  Ground temperature and 
relative humidity are also factors influencing how ammonia disperses. 

On January 18, 1992, a train derailment which sent a cloud of anhydrous 
ammonia over Minot, North Dakota, killed one man, sent part of a rail car 
slamming into a house and forced dozens of people to hospital with breathing 
problems.  The air temperature was about 5oF below zero.  The cold temperature 
and a lack of wind made the gas linger in the area (according to Bismark 
Tribunes News Stories).  Reports of such ammonia spills abound in the news 
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literature, however the challenge for model testing purposes is to identify a case 
with good meteorological and monitoring data.  Cawton et al (2009) analyzed 
ambient air-sampling data following accidental releases of ammonia.  Although 
their focus was indoor, valuable information might be accessible in their dataset. 

3.1.1.2 Emergency Flares 
Emergency flaring occurs during operational shutdown caused by defective 
operations or planned maintenance in the oil and gas industry.  During such 
mishaps, large quantities of gas are flared for hours or even days on end, with 
potentially significant releases of SO2 and unburnt H2S. 

Short-term impact in the vicinity of the flare (hours, within 10km) can be 
addressed with steady-state modelling as long as the steady-state model can 
also address rainfall and vertical wind shear (the latter because the source is 
very buoyant and plume rise is significant).  Obviously if micrometeorological 
properties vary sharply in the vicinity of the flare (for example for a close 
offshore or coastal location, or for a release occurring near sunrise), non-steady-
state type of modelling may be required to address the changing meteorological 
conditions. 

For longer range transport of SO2 and H2S from a lengthy emergency flaring 
situation, the meteorological conditions are unlikely to remain constant along the 
plume trajectory and non-steady-state modelling has to be performed. 

3.1.1.3 Gas Blow-By and Pipe Ruptures 
When a control valve fails and is stuck wide open, for example in a Water-Oil-
Separation Plant (WOSEP) at an oil-gas production facility, high-pressure gas 
could find its way out of a tank or pipe.  The jet-type accidental release is 
usually short-lived (from a few minutes up to a couple of hours, during which 
operators shut-down or isolate the defective system).  Although the release itself 
is time-varying, the impacts are generally confined within short distances 
(hundreds of metres) and meteorological conditions are unlikely to vary between 
the source and receptors, unless the rupture occurs in a cluttered built-up area.  
Therefore, meteorological conditions are typically steady-state during blow-by 
and pipe rupture accidents. 

3.1.2 Long Range Accidental Releases 
Accidental releases can have lasting airborne effects, of the order of days or 
even weeks, long after the sources have stopped emitting and as long as the 
pollutant is airborne.  In those cases, long-term meteorological conditions have 
to be considered.  Because of the long distances and short and long timescales 
involved, steady-state modelling is not an option for long-range dispersion 
modelling of accidental releases. 

A typical example of lasting airborne accidental release is the Chernobyl nuclear 
accident, with radioactive material reaching the upper troposphere and being 
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transported far away for a long period of time (weeks to months).  Superposed 
on the general trend of decreasing fallout with increasing distance, are more 
local incidence patterns reflecting weather conditions.  Rainfall, thunderstorms, 
or any subsidence event can bring material down to the ground far away from 
the site of the original accident, and long after the initial incident has occurred.  

The Chernobyl explosion is such an example, with radioactive material spewed 
all over Europe, and radioactive rainfall occurring, notably, in the UK.  During 
the two day passage of the Chernobyl cloud over the UK, on May 2-3, 1986, 
heavy thunderstorms and rainfall were the major factors affecting local 
deposition of radioactive material, especially radioactive Cesium (Cs-137).  A 
survey undertaken by the Institute of Terrestrial Ecology (ITE) recorded levels of 
137Cs deposition on vegetation ranging from less than 10 Bq m-2 in parts of the 
Midlands and Southern England to over 1,000 Bq m-2 in many Western upland 
areas more affected by rainfall at the time (Allen, 1986).  A simple steady-state 
model is not adequate to correctly predict the amount of radioactive Cesium that 
deposited over the UK from the Chernobyl cloud on May 2-3, 1986. 

Other examples of long-range transports are described in section 3.8 related to 
natural sources releases. 

3.2 Risk Assessment 

Risk assessment studies are performed by facilities conducting potentially 
dangerous operations in order to design safety zones around those operations.  
Safety perimeters are based on accident type, released chemicals, failure 
frequency, and meteorology.  Risk Assessment can also include the 
quantification of risk associated with accidental releases of short duration.  Risk 
assessment impact results are used for input to emergency planning.  Contrary 
to actual accidental releases, which were discussed in the previous section, risk 
assessment modelling does not require the knowledge of a particular plume path 
at a specific time.  Air dispersion modelling studies are implemented to estimate 
the frequency of the worst case scenario and at which distance from the source 
the highest peak concentrations may happen.  Both air concentrations and flux 
depositions at different timescales are a concern. 

Steady-state modelling might appear to be conservative and sufficient for risk 
assessments since the distance from the source to where maximum 
concentrations occur is usually within 10 kilometres.  But for short time-scale 
accidents, it is important to remember that worst-case scenarios might involve 
non-steady-state situations, such as stagnant conditions followed by fumigation.  
Stagnant conditions are steady-state per se, but the accumulation of pollutant 
they create and subsequent flushing by changing meteorological conditions 
cannot be handled by steady-state dispersion models. 

An analysis of the local physical characteristics of the area around the sources 
and the frequency of certain type of meteorological conditions may be required.  
Local changes in meteorology can be linked to the worst-case impact.  Such 
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conditions need to be identified and their frequency evaluated.  If they can lead 
to worst-case scenarios and are frequent enough, a steady-state model may not 
be appropriate for risk assessment analysis in the near-field of such a site. 

3.3 Odour Modelling 

Odours are the most important environmental issue in implementing wastewater 
treatment and bio-solid management facilities, although many other industrial 
and agricultural processes also cause odour nuisance.  The time scale for odour 
can be as short as 0.1 to 1 second and is usually in the sub-hourly time scale.  
The averaging time specified in odour legislation is location specific: for example, 
it is one hour in Massachusetts, US, Europe and UK, ten seconds in Hong Kong 
and one second in Australia. 

One important requirement for modelling odours is the capability to take 
potential stagnation and accumulation into account (for example during calm 
wind conditions), as well as compounding factors such as recirculation and 
building downwash.  Causality effects and spatial and temporal variability are 
also important factors. 

Whether steady-state modelling is adequate or not depends on the timescale 
involved and the type of odour application.  Indeed if the odour modelling is 
performed to assess the potential for odour nuisance in the vicinity of a 
malodorous facility, steady-state modelling might be adequate, provided 
recirculation or stagnation is not an issue.  If however odour modelling is 
performed to assess a specific complaint and the necessary high-frequency 
meteorological data is available, one might have to actually model high 
frequency meandering of the malodorous plumes, with a puff, particle, or non-
steady-state CFD model. 

Odour modelling being in general a near-field application can in some cases also 
have a long-range impact as it is demonstrated in Smethurst et al. (2010) 
paper.  In this paper, the authors tried to understand why a number of odour 
complaints were registered over a large area of East UK on the morning of April 
18, 2008.  The area of concern was much larger than a possible local impact.  
Their conclusions described possible large scale spreading of agricultural slurry 
over Belgium, the Netherlands and north Germany during low wind speed 
conditions followed by brisk easterly winds bringing the stagnated air towards 
the east coast of England.  Steady-state atmospheric dispersion models would 
not be able to reproduce such situations of possible long range transport, which 
includes stagnation followed by changing wind characteristics becoming stronger 
and unidirectional. 

An extensive review of available dispersion models to assess odours was 
published by the National Environmental Research Institute in Denmark (Olesen 
et al, 2005).  The authors discuss Gaussian plume models, Lagrangian particle 
models, and CFD models.  They mention but fail to discuss puff models.  The 
report also describes a selection of available datasets for model validation. 
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3.4 Regulatory Impact Assessment 

These assessments are designed to evaluate the impact of future sources for 
permitting purposes or to evaluate potential upgrades to reduce the excessive 
impact of existing sources.  Source apportionment analyses, worst-case scenario 
evaluation, engineering design and cost-benefit analyses can also be conducted 
in such studies.  The regulatory control assessments are usually carried out for 
continuous releases.  The impact assessments focus on peak concentrations (or 
nth percentile) for timescales varying from sub-hourly to annual averages.  
Consideration of planned short duration releases such as reactor blow down 
events or abnormal discharges may also be required. 

Regulatory assessment can be required for long-range transport or near-field 
impact.  Steady-state modelling is often sufficient for short range impact, 
although not always if the area of interest either experiences many calm periods 
or if it includes a physical boundary affecting micrometeorology, such as a 
coastline or a valley.  The United States Environmental Protection Agency (US 
EPA) recommends using AERMOD for near-field impact assessment, however, in 
certain more complex situations a non-steady-state model such as the 
Lagrangian puff dispersion model CALPUFF may need to be used to better 
represent the situation.  Long range transport usually requires non-steady-state 
modelling.  The distance from the source where the transport becomes non-
steady-state and a long-range application is usually site specific and needs to be 
evaluated beforehand. 

Regulatory impact assessments of routine nuclear discharges, an example of 
regulatory assessment application, are commonly simulated using simple 
Gaussian plume models for annual average concentration estimations.  Studies 
by Lutman et al. (2004) compared the impact results of such applications from a 
steady-state model (the Gaussian plume model NRPB-R91, Clarke R.H. 1979) 
and a non-steady-state (the Lagrangian particle based model NAME, Maryon 
R.H. et al., 1999).  Both concentrations of radiative pollutants and flux 
depositions of pollutants were evaluated.  Statistical meteorology rather than 
temporal meteorology was used as input into the models.  One of the 
conclusions of the study was that the difference between the annual average 
concentrations for the two models was within the accuracy of the models 
themselves.  And since the results of the Gaussian plume model were larger 
than the results of the Lagrangian particle model at a distance larger than 
200km, it was concluded that simple Gaussian plume model associated with 
statistical meteorology can be accepted for such applications.  The question that 
can be raised is whether the concentrations results from the Gaussian plume 
model may be too conservative or not but observations were not available for 
comparison.  While considering deposition fluxes, the simple Gaussian plume 
model was not considered adequate to model wet deposition fluxes.  The 
modelling results of wet depositions with the steady-state model were much 
smaller than when the Lagrangian particle model was used. 

This illustrates that simple steady-state models and/or statistical meteorology 
have been used for long-range impact assessment on long-term timescales such 
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as annual averaged concentration estimates.  Considering the distance between 
the source and the receptors, the situation is clearly non-steady-state.  In this 
case, statistical meteorology is used to palliate the steady-state characteristics 
of the models.  However, regular practices for long-range applications at short-
term and long-term timescales have been gradually changed to the use of non-
steady-state models associated with sequential meteorology. 

For near-field impact of a regulatory impact assessment over short timescales, 
the use of simple steady-state models can be questioned.  Some complex flow 
situations such as sea breeze, mountain/valley breeze, fumigation or stagnation 
followed by front or fumigation can lead to peak concentrations in the near-field 
of a source and cannot be accurately modelled by a simple steady-state model.  
Model evaluation studies are needed to quantify the amplitude of the error on 
concentrations and flux depositions if simple steady-state models are used 
instead of non-steady-state models in such non-steady-state situations.  The 
availability of datasets for such studies is discussed in section 5. 

3.5 Operational Real-Time and Forecast Modelling 

The user of atmospheric dispersion models for such application is interested in a 
conservative estimate of the impact of a facility in the vicinity of the sources in 
the following 24 to 48 hours to avoid violating health, safety or regulatory 
standards.  If the pollution forecast approaches or exceeds a regulatory standard, 
the system should raise an alert, predict impacts for alternative operational 
scenarios, and help in the decision making to switch to less polluting operations.  
An example of such a system using ETA Analysis and CALPUFF modelling is 
described in Robe et al., 2002. 

As for all short range applications, steady-state modelling should be adequate as 
long as there is no potential for recirculation, stagnation or fumigation.  
Additionally if the terrain is complex, the model, be it steady-state or non 
steady-state, should be capable of modelling terrain-induced circulations.  For 
long-range forecast modelling application, non-steady-state models are 
recommended. 

3.6 Planning Studies 

Examples of such studies are land use planning to minimize population exposure 
to pollutants, design and optimization of monitoring networks, or selection of a 
site for implementing a new facility.  The important outputs required from these 
studies are the concentrations and spatial distribution of the pollutants, the 
maximum distance from the source where the pollutant concentrations can 
violate standard thresholds for averaging periods ranging from sub-hourly to 
annual time scales, and the frequency of exceedances.  In the modelling, the 
user needs to take into account the important geophysical features that can 
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mitigate or enhance the impact (such as bodies of water, forests, heat islands 
due to urban city centres, etc). 

As far as dispersion modelling is concerned, planning and permitting studies are 
rather similar. 

3.7 Cumulative Impact Assessments 

Cumulative impact assessments look at the combined impact of several sources, 
sometimes several hundred sources.  For instance, in the United States, the 
National Ambient Air Quality Standards (NAAQS) are cumulative standards, not 
single source standards.  Therefore background source contributions can be 
important and sometimes critical for NAAQS compliance demonstrations.  It 
requires modelling of all background sources in the vicinity of the source of 
concern to estimate its compliance with the NAAQS. 

If the pollutant of interest is a passive tracer, each source can be modelled 
separately.  If however chemistry is important, all the sources have to be 
modelled together, with a model that can handle all of them as well as relevant 
chemistry, which is a rather restrictive requirement. 

Whether steady-state modelling is adequate or not once again depends on the 
distance of interest and averaging time.  Unless all the sources and receptors 
pertaining to the cumulative impact assessment experience identical weather, a 
model that can deal with non rectilinear trajectories is required and straight 
steady-state Gaussian plume models are not adequate.  Moreover if the 
modelling domain is so large that pollutants cannot reach the receptors of 
interest before meteorological conditions change, non steady-state modelling is 
also required. 

3.8 Natural Sources 

Other atmospheric dispersion applications are developed for monitoring or 
forecasting natural sources emissions such as volcanic eruption, accidental and 
prescribed fires or even regional sand transport. 

3.8.1 Volcanic Eruption 
The first example of these applications is a volcanic eruption spawning ash way 
up into the stratosphere, with particulate matter circling the globe for months 
after the eruption, allowing the potential for contamination to last for a very long 
time, with deep convective events and large-scale subsidence areas responsible 
for bringing the impact to the surface sometimes months and thousands of miles 
away from the volcano. 

Additionally minor eruptions and volcanic smoke are a constant threat to aircraft 
passing in the vicinity of volcanoes and the dispersion of ash in the lower and 
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middle troposphere needs to be constantly and accurately predicted.  The 
Particulate Matter (PM) plumes very much depend on the sporadic release 
(definitely a non-steady-state source) and the weather which is affected by 
mesoscale meteorology, terrain-related waves, and thermals.  This type of non 
steady-state dispersion application had a direct impact in the UK and Europe in 
spring 2010, when British and European air space was closed for up to 10 
consecutive days to aircraft because of the potential presence of volcanic ash 
(containing highly abrasive dust particles) dangerous for aviation (BBC, 15th April 
2010).  This situation arose as a consequence of the explosive activity from the 
Eyjafjallajokull volcano in Iceland (with ash ejected to a height of between 
20,000 and 30,000 ft at times), the meteorological anticyclone system centred 
west of the British Isles, and the associated North-West winds advecting the 
Icelandic ash towards Europe (Met office, 2010).  Other areas of the world with 
active volcanoes such as Sicily, Indonesia and Alaska need monitoring and 
volcanic ash pathways forecast to potentially divert aircraft flying over these 
areas. 

3.8.2 Fires (Accidental or Prescribed) 
Every year, square kilometres of forest burn in many parts of the world (Asia, 
North America, Russia, Europe, etc.) either on purpose or accidentally.  For 
example, forest burn in Borneo, emitted smoke and ash all over South East Asia.  
Kuala Lumpur, experienced Borneo-fire-related haze during the month of 
August, when the large scale atmospheric circulation directs the ash plumes 
across the South China Sea.  Morning inversion compounds the problem, with 
serious consequences for health and visibility (e.g. Afroz et al, 2003). 

Another example of large scale fires and long range dispersion applications are 
the oil well fires in Iraq during the first Gulf War.  Those fires were started on 
purpose but accidental well blow-outs often get ignited and result in fires lasting 
several days.  Owing to the duration of the fires, meteorological conditions do 
tend to change during the course of the fires.  Moreover the blow-out itself is not 
a steady-state release, with explosive and gaseous releases often preceding the 
ignition and subsequent fire.  An example of such a blow-out occurred at the 
Ocean Odyssey Platform on the UK Continental Shelf, on September 22, 1998.  
Other offshore drilling fires include the Piper Alpha disaster on July 6, 1988. 

Prescribed fires are usually started during adequate meteorological conditions so 
they do not bring any disruption in the vicinity areas and do not spread out of 
control.  Low wind speeds conditions and low levels of turbulence are required to 
avoid such spreading.  Speer and Leslie (2000) showed how a change in 
meteorological conditions during a prescribed fire can affect the local population 
and its activity.  They studied an air pollution episode during the period 12-14 
April 1997.  This generic example of a stationary high-pressure ridge with its 
axis over the New South Wales coast just north of Sydney produced very light 
winds at low levels over the Sydney metropolitan area and aided the formation 
of surface temperature inversions, associated with a succession of humid sea 
breezes and land breezes.  These meteorological conditions concentrated the 
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smoke of a prescribed burn just north of Sydney in the eastern part of Sydney 
metropolitan area.  The hazardous smog formation was suddenly transported 
south-west over a major highway disrupting the local traffic.  It was induced 
synoptically by a change in wind direction that transported smoke and fog to the 
south west. 

Another prescribed fire which may have affected population at a long distance 
from the source is discussed by Witham (2008) where she described how 
biomass burning in Ukraine in March 2007 may have led to elevated PM10 over 
much of the UK. 

3.8.3 Sand Transport over long distances 
Sand transport towards nearby cities, as it was illustrated for Mexico City in 
section 2.1.2.4, is another example of a natural source of pollutant dispersion 
that may require modelling.  Such transport can be local but may also spread 
over very long distance.  Long range transport of sand from the desert of Gobi 
or the Sahara has been shown to impact Beijing city and cities all over Europe, 
respectively.  For instance, during the period 23-24 January 2008, eight sites in 
the UK measured levels of PM10 concentrations at air pollution index 7 (high) or 
above, and two of these sites also went on to record very high pollution at index 
10.  The cause of this PM10 particulate episode was observed to have been long 
range transport of dust as a result of sandstorms in Africa with a possible but 
unlikely contribution from African forest fires (Cook et al, 2008). 
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4 STEADY-STATE VERSUS NON-STEADY-STATE 
DISPERSION MODELLING 

4.1 Steady-State Conditions 

Non-steady-state models should be required to simulate dispersion applications 
occurring when meteorological conditions change significantly during the time it 
takes for pollutants to travel from source to receptor.  However, steady-state 
models are sometimes used to model non-steady-state situations and the results 
of such modelling are appropriate in some specific situations.  So, it is important 
to accurately define steady-state modelling conditions and steady-state model 
characteristics to be able to evaluate the suitability of steady-state models for 
modelling non-steady-state conditions. 

Steady-state modelling conditions can be summarized as follows: 

a Conditions do not change over time: 
- Over the time period needed for the plume to reach each receptor, 

the meteorological conditions are assumed to be constant 
- Source characteristics, including emission rates, exit temperature 

and exit velocity are constant 
b Each hour is separate and independent of previous hours: 

- No memory of pollutant location or emissions from previous hours 
are required 

c Meteorological conditions are constant within the modelling domain, 
which is true for most steady-state models, some having the capability 
to deal with varying terrain by modelling linear flow around complex 
terrain. 
-  Spatially constant meteorological variables: wind speed & direction, 

mixing height, temperature, humidity, and precipitation 
-  Spatially constant turbulence variables: Surface friction velocity 

(u*), convective velocity scale (w*), Monin-Obukhov length (L), all related 
to surface characteristics. 

 
Although not strictly part of the Eulerian definition of steady-state conditions, 
the conditions in (c) are true for most steady-state dispersion models (see 
section 4.4.2 for a discussion of Eulerian vs. Lagrangian steady-state). 

Steady-state models are appropriate for modelling pollution impact at mesoscale 
distances from a continuous-release source as long as the land characteristics 
are spatially constant between the source, the receptors and the meteorological 
stations involved in the modelling, and as long as the flow remains non complex.  
It is difficult to determine the exact distance from the source when the 
conditions become non-steady-state.  It is dependent on the source 
characteristics, land surface conditions and meteorology.  The steady-state index 
described in section 4.4.3 may help to determine how far from the source 
steady-state conditions are still valid. 
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Variability in meteorological conditions may not always be reproduced correctly 
with some steady-state models because of the nature of their characteristics as 
described above.  For instance, steady-state models which represent plumes as 
straight lines to infinity are not able to represent curved trajectories.  They are 
also unable to represent time of travel, which may have an impact when the 
wind speed varies.  The combination of the two limitations can bring pollutant 
toward a receptor where the plume may not have reached.  A study developed 
by the Atmospheric Study Group (ASG) at Earth Tech, Inc. for CALPUFF training 
to illustrate discrepancies between steady-state models and non-steady-state 
models, displays a 24h average footprint of SO2 concentration (Figure 11) from 
hourly continuous emissions simulated with a steady-state model on the left 
(ISC) and with a non-steady-state model on the right (CALPUFF).  The same 
meteorological data, in the form of a single surface station, is imported in the 
two models.  CALPUFF outputs, like ISCs, are computed using single point 
meteorology.  Figure 11 shows how the trajectories are extending to infinity at 
each hour on the left while the trajectories are following the variations in wind 
speed and wind direction on the right.  The comparison of the two footprints 
shows a larger maximum 24h average impact for the steady-state model.  The 
main impact for the two models is located in the North to East-South East side of 
the source.  However, the steady-state model impact is covering also areas on 
the North West side and South side of the source.  While the North West side 
and South West side of the source is never reached with the non-steady-state 
model. 

Since in steady-state models all time steps are independent, no accumulation of 
pollutants can be simulated.  Pollutant accumulation above the top of the 
planetary boundary layer before morning fumigation or pollution accumulation in 
a calm wind area before a sudden change in wind direction and intensity are 
situations that a steady-state model fails to simulate correctly.  Similarly coastal 
fumigation associated with an onshore breeze and a change of mixing height 
between a coastal source and an inland receptor requires non-steady-state 
modelling. 

Changes of land characteristics can induce changes in turbulence and create 
situations where pollutant concentrations are depleted by dry deposition or 
become more diluted.  For instance, ground concentrations tend to be higher 
over smoother surfaces while rougher surfaces increase turbulence and help a 
polluted cloud to dissipate thus decreasing ground concentrations. 

4.2 Time scales 

Based on the examples discussed in the previous chapters, Table 1 summarizes 
timescales associated with changing weather conditions and various dispersion 
applications.  This table highlights under which meteorological circumstances a 
specific dispersion application may need to be modelled with a non-steady-state 
dispersion model.  The key is whether the meteorological conditions changed 
during the time it took for the pollutant to travel from its source to the receptors 
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of interest: this could be a matter of minutes, hours, days or even weeks, 
depending on the application and the relative position of sources and receptors. 

However, depending on the averaging time of interest for the application and the 
frequency of non-steady-state conditions, steady-state models may be 
appropriate for modelling non-steady-state situations.  For instance, individual 
high impact events, such as fumigation and calm wind conditions, usually do not 
contribute too much to annual averages, unless the frequency of this type of 
event is dominant over all the year.  Therefore, steady-state models are usually 
acceptable to compute annual averages at receptors close enough to the source 
for the pollutant to reach them within a time step or within the time scale of 
typical weather events in the area, and provided the trajectories to the receptors 
are straight line (for most steady-state dispersion models).  For annual average 
impact at distances from a source which can no longer be considered steady-
state, the use of steady-state models might be questioned.  A study by Lutman 
et al. (2004) shows that annual averages of steady-state model results were 
conservative when compared to non-steady-state model ones at distances from 
the source of 200km or more, but the comparison was showing opposite results 
for impact at distances between 100 and 200km.  For this application, statistical 
meteorological data was used for steady-state modelling.  A discussion between 
statistical and sequential meteorology is tackled in section 5.1 

When short-time scale averages are the focus of a study, the circumstances 
leading to the highest impact have first to be analysed.  Indeed, even if simple 
steady-state models give usually a conservative estimate of concentration 
impact, in some specific situations it may not be conservative.  If those 
circumstances involve accumulation, recirculation, or changing meteorological 
conditions along the trajectories towards the receptors, a non-steady-state 
model is required.  If however the highest impacts are linked to specific 
meteorological conditions (e.g. very stable hours, high wind speeds, etc…) not 
involving accumulation or recirculation, a steady-state model should be able to 
capture the peaks.  For applications, when the pollutant path is of concern, 
steady-state models need to be used with caution since they are unable to 
simulate curved trajectories.  Figures 12 and 13, two individual time steps, hour 
9 and hour 4, respectively, taken from the study developed by ASG, Earth Tech, 
Inc for CALPUFF Training (section 4.1) illustrate the discrepancies between 
simulations with steady-state models or non-steady-state models in curved 
trajectories situations due to changes in wind speed and direction.  Figure 12 
displays a higher peak for the steady-state model simulation and a curved 
trajectory for the non-steady-state model while Figure 13 displays a higher peak 
for the non-steady-state model simulation and a different location of impact than 
for the steady-state model simulation. 
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4.3 Non-Steady-State situations where use of a steady-
state model can become an issue 

The applications described in Section 3 can be classified by the nature of the 
outcome at the sensitive receptors.  For some applications such as long-range 
and short-range accidental releases, odour modelling and forecasting, the 
pollutant path and its concentration along the path are crucial and need to be 
simulated accurately.  On the other hand for risk assessment or regulatory 
impact assessment for permitting purposes or planning purposes, the maximum 
peak concentrations, worst-case scenarios and the frequency of peak 
concentrations are the most important. 

For applications where the pollutant path is important, using a steady-state 
model when a change in wind speed or wind direction occurs between the source 
and the receptor has potential to overpredict or underpredict the pollutant 
concentrations at the receptors.  For accidental release applications, it might 
result in incorrect emergency response decisions.  For odour modelling and 
source apportionment, it might result in a misinterpretation of the source of the 
pollutant.  For forecasting, it might result in giving wrong information to the 
public or making wrong operational decisions at industrial sites. 

The main meteorological parameters whose changes can affect the pollutant 
concentrations or pollutant path include the wind direction, wind speed, vertical 
wind shear, turbulence or stability classes, mixing height or temperature 
gradient and precipitation.  Table 2 links changes in meteorological parameters 
with changing weather situations, potential impact on receptors, and 
atmospheric dispersion applications which can possibly be the most affected by 
these changes. 

Wind shifts affect plume trajectories and consequently the concentration 
footprints.  Significant changes in wind direction along the plume path such as 
those associated with the passage of a front (warm or cold), thunderstorms or 
squall lines, or any air recirculation such as land-sea breeze, and mountain-
valley winds, cannot be simulated with a straight line plume, a characteristic 
shared by most steady-state dispersion models.  Using a straight line model 
under such changing circumstances might lead to large discrepancies with 
observations or simulations carried out with a path-following model such as 
Lagrangian puff model or Lagrangian particle model.  Long-range accidental 
release, odour modelling, real-time operational, and forecast applications are 
affected by significant changes in wind direction.  The longer the range the more 
likely the plume encounters a shift in wind direction along its trajectory. 

A change in wind speed transports the material and the peak concentrations to a 
potentially different distance from the source than if the wind stays constant.  A 
change of wind speed also affects mechanical turbulence resulting in changes in 
the dilution of the material within the toxic cloud.  For example, pollutant 
concentrations accumulated during calm wind conditions can affect sensitive 
receptor areas when the wind suddenly increases and carries the polluted air 
over the sensitive area.  Applications such as accidental release, odour modelling 
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and real-time operational modelling are sensitive to such changes in wind speed.  
Smethurst et al. (2010) show how some odour modelling complaints over the UK 
could be linked to long range transport of material after a period of stagnation 
conditions. 

Vertical wind shear can affect the path and the pollutant concentration.  The 
surface wind may not be representative of the wind at the tip of a stack or at the 
height where the buoyant source is released.  In case of accidental release or 
emergency response for instance, it is important to incorporate the vertical 
resolution of wind speed and wind direction and sometime the three dimensional 
resolution of wind speed and direction.  For example, in the case of a source 
located at a coastal site and subject to sea breeze circulation. 

Changes in turbulence conditions on the path between the source and the 
receptors may be significant, like for instance, if the material is transported from 
a rural area to an urban area (or vice versa).  As the roughness length changes, 
so do the turbulence level and hence the plume dilution.  Smaller roughness 
lengths (rural area) induce less turbulence, less dilution, and therefore usually 
larger concentrations than larger roughness lengths (urban or forested areas).  
As many steady-state models assume uniform roughness length over the 
domain, they fail to properly model impacts across non-uniform areas, either 
underestimating or overestimating ground concentrations depending on the 
choice made for that single uniform roughness length.  This can affect accidental 
release applications as well as regulatory impact assessment applications for any 
averaging period.  Modelling efforts might be required to quantify the impact of 
simulating an area with uniform versus non-uniform roughness length where it is 
relevant. 

Changes in mixing height can have a strong effect on pollutant concentrations at 
the ground.  Such a change can create a sudden increase in ground 
concentrations when the polluted air masses are mixed to the ground by a 
growing turbulent boundary layer.  Examples of such situations are inversion 
break-up and shoreline fumigation effects.  On the other hand, on a clear sky 
night, radiative cooling of the ground generates a stable surface layer, capped 
by a thermal inversion layer, which can trap pollutants either above the 
inversion layer, with beneficial consequences as in the Buncefield Depot Fire, or 
below the inversion layer, with harmful consequences as in smog events.  These 
mixing height changes play an important role in the atmospheric dispersion of 
pollutants.  They have a great impact on applications either sensitive to the 
amount of pollutant at receptors, or focusing on worst-case scenarios and peak 
short-term concentrations.  Applications such as odour modelling, risk 
assessment, regulatory impact assessment on short-term time scale, operational 
real-time modelling and forecast modelling are affected by change in mixing 
height between the source and the receptor.  These situations are considered 
non-steady-state and require non-steady-state atmospheric dispersion models 
for adequate modelling. 

Changes in precipitation have a strong impact on pollution deposition and 
removal of material from the atmosphere.  Precipitation can take multiple forms 
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depending on air temperature and path travelled by the air parcel.  The most 
common forms are rain, snow or hail.  Gaseous pollutants are scavenged by 
dissolution into cloud droplets and precipitation.  Particulate pollutants are 
removed by both in-cloud scavenging (rainout) and below-cloud scavenging 
(washout).  Different types of precipitation have different impacts on pollution.  
For instance, liquid precipitation can scavenge gas while frozen precipitation 
usually does not.  For modelling purposes, empirically-based scavenging 
coefficient methods are used.  For advanced models, the scavenging of a 
pollutant depends on the precipitation rate, the nature of precipitation and the 
characteristics of the pollutant itself (e.g. solubility and reactivity).  Acid rains 
are an example of the consequences of pollution being trapped in clouds and 
washout with rain on vegetation.  An accurate simulation of acid rains is affected 
by temporal changes in precipitation conditions along the path of the pollutants.  
However, if the precipitation occurs close to the source or is homogeneous on a 
determined period, steady-state model would be able to reproduce wet 
deposition fluxes in the vicinity of the source.  Long-range accidental release 
event such as Chernobyl is an example where the transport of pollution in an air 
mass was suddenly drained out in an area because of a sudden change in 
meteorological conditions.  Such event, characterized by a long-range impact 
(hundred kilometres from the source), cannot be modelled with a steady-state 
model.  The model needs to be able to simulate removal of materials along the 
path between the source and receptors and represents accurately the path of 
the pollutant up to the area of concern.  A steady-state model, characterized by 
a straight-line trajectory and no memory of the previous hour cannot simulate 
hourly or daily wet deposition fluxes of pollutant at such distance from a source 
accurately.  A long-range impact study of routine nuclear annual discharged 
performed by Lutman et al. (2004) shows that even on long-term averages a 
steady-state model would fail to reproduce the annual average of wet deposition 
fluxes.  The wet deposition fluxes computed by R91 were much lower than the 
wet deposition fluxes computed by the NAME model, a Lagrangian particle 
model.  The modelling results were not compared to any observations since the 
latter were not available but nevertheless, estimates obtained with the steady-
state model were much too low to seem reliable.  Although homogeneous rainfall 
can be dealt with by steady-state models, rainfall occurring sporadically or 
locally between the sources and receptors requires non-steady-state models for 
proper modelling. 

Changes in land use characteristics along the path of a pollutant can affect the 
dry deposition fluxes if modelled.  For instance, in simple Gaussian plume 
models, the dry deposition flux is a function of the ground concentration and 
deposition velocity specific to the pollutant.  The reduction in air concentration is 
spread uniformly across the plume by modifying the original source term for 
example in the PLUME model (Jones, 1981), while in Lagrangian puff models 
such as CALPUFF (Scire et al, 1996) the reduction due to deposition velocity or 
wet scavenging is applied differently at every time step along the path, 
depending on local conditions of landuse and meteorological information. 
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4.4 Further Discussions 

4.4.1 Calm Wind Conditions 
Although the focus of this work has been on temporal variations of 
meteorological conditions, it is important to stress that non-steady-state models 
might be required even when the meteorological conditions are apparently non-
changing.  One such instance is during calm wind conditions. 

During calm wind conditions the hourly averaged meteorology is steady but the 
dispersion model has to be non-steady-state to account for pollutant 
accumulation during calm wind conditions if they last more than one hour.  If a 
steady-state model is used during those calm hours, peak concentrations are 
likely to be underestimated.  This certainly affects short-term averages but 
might not impact longer term averages unless calm wind frequency in the area 
of interest is high.  Both the frequency of calm wind conditions and the length of 
the calm wind periods are important to be considered.  One hour of calm wind 
may be of little impact both for short-term and long-term averages but several 
consecutive hours can lead to high pollutant concentration.  If these several 
hours of calm wind happen frequently enough during the year, long-term 
averages may also be affected. 

Steady-state Gaussian plume models cannot handle zero wind speeds because of 
their formulation: both plume rise and horizontal plume spread are inversely 
proportional to the wind speed.  Calm wind hours are therefore either removed 
from the computation, or a minimum wind speed is applied.  For instance, 
ADMS-Urban and ADMS-road set a minimum wind speed of 0.75 m/s.  While the 
US EPA type models (AERMOD, ISC) assume that all wind speeds recorded as 
between 0.5 – 1 m/s are treated as 1m/s.  For wind speeds less than 0.5 m/s, a 
number of rules are applied either to ignore these hours if short period of calm 
wind is recorded or to apply a minimum wind speed value if long period of calm 
wind is measured.  A lot of research is still being carried out to circumvent that 
limitation.  For instance, an option has been added to the latest version of 
ADMS, ADMS-4 to simulate calm wind conditions (CERC, 2010). 

It is also worth noting that calm hourly-average winds do not imply the absence 
of any motion, but rather they imply high frequency sub-hourly multi-directional 
wind shifts.  While the sub-hourly shifts may not matter much for long scale 
dispersion, as long as the overall plume growth and accumulation are accounted 
for, the sub-hourly shifts may be important for short-range transport of toxic or 
malodorous compounds.  For instance, the short range peak impact may be at a 
different spatial location if hourly averaged or sub-hourly averaged 
meteorological conditions are used in the modelling.  Barclay (2008) showed 
how modelled surface concentrations can change quite substantially if averaged 
hourly winds are used rather than 6-minute averaged winds (Figure 14).  
Additionally Figure 15 (from Barclay, 2008) shows a different spatial footprint 
and a large increase in turbulence variability if high resolution real time 
turbulence parameters are used rather than model-computed turbulence 
parameters. 
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4.4.2 Spatial Variability 
Both spatial and temporal changes in meteorological conditions can significantly 
impact pollutant dispersion.  Although spatially varying meteorological conditions 
within a modelling domain can be a priori steady-state, it is important to note 
that most common steady-state dispersion models: 

a are straight Gaussian plume models 
b assume uniform land use (i.e. uniform dispersion properties) 
c assume uniform rainfall (if any),  
d even sometimes assume flat terrain 
 
Therefore, even in steady-state meteorological conditions, many steady-state 
models are not appropriate to simulate dispersion over non-uniform domains. 

Furthermore, steady-state meteorology from an Eulerian point of view (i.e. 
constant meteorological conditions at a given location in the domain) does not 
imply steady-state meteorology in the Lagrangian sense (constant 
meteorological conditions along the pollutant’s trajectory between the source 
and the receptors).  From the pollutant’s point of view as it travels from the 
source to a given receptor, spatially inhomogeneous meteorological conditions 
do mean temporally varying meteorological conditions.  

The limitations of straight plume models are illustrated in Figures 16 and 17 
(from Scire et al, 2009).  Figure 16 depicts the situation of multiple sources, two 
of which are on the coastal side of a sea breeze front, and one of which is on the 
land side of the front.  Very different wind directions in the two areas make it 
impossible for a steady-state model to predict regional impact accurately in this 
situation.  Figure 17 depicts the situation of sources located within a curved 
valley.  Terrain channelling of the flow requires the use of a non-steady-state 
model that can deal with spatial variability of the flow or a steady-state model 
which has an option to include a contour following module such as ADMS. 

So whether the meteorological conditions are changing rapidly at a given 
location within the domain or whether they are changing spatially within the 
domain, non-steady-state dispersion modelling is required to accurately model 
the changes in dispersion when the outcome is on a short-term timescale. 

Meteorological events only spatially affect a dispersion application if the spatial 
changes are within the modelling domain.  In Figure 16, a steady-state model 
could be used if only one source had to be considered (i.e. no cumulative 
impact) or if the three sources were on the same side of the sea-breeze front for 
the averaging period of interest.  Similarly in the Figure 17 example, straight 
plume model at the source called INKOM is appropriate as long as the receptors 
are located in the same valley segment, i.e. no further away than 6 km during 
easterly wind conditions but only up to 1 km in westerly flow. 
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4.4.3 Steady-state Index 
For modelling purposes, an analysis may need to be performed to identify how 
often during the modelling period and over which areas conditions can be 
characterized as steady-state.  Scire (2009) introduced the notion of a steady-
state index (SSI) to help assess the “steady-state status” of a given application.  
He further suggested basing the SSI on spatial and temporal variability of three 
factors within the modelling domain: dilution, as measured by wind speed, 
advection, as characterized by wind direction, and dispersion, based on stability 
class.  If any of those parameters varied significantly at any time or place 
between the source and the receptors, non-steady-state conditions applied and 
if they happen often enough during the period analysed a non-steady-state 
model should be used. 

4.4.4 Source characteristics 
Source characteristics, such as release height, exit velocity and exit 
temperature, may affect pollutant trajectories and dispersion, and how they are 
affected by changing meteorological conditions.  Ground or non-buoyant source 
impacts are typically shorter range than impacts from elevated or buoyant 
sources, and consequently not as likely to encounter varying meteorological 
conditions.   

Varying emissions or intermittent emissions are non-steady-state of course but 
beyond the scope of this review. 
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5 ATMOSPHERIC DISPERSION MODELS AND 
EVALUATION DATASET 

5.1 Choice of Atmospheric Dispersion Models 

One of the aims of this review is to determine how current atmospheric 
dispersion models account for changing meteorology and how this affects 
modelling results.  The number of atmospheric dispersion models has increased 
enormously over the years.  Some models are more widely used for regulatory 
applications while others are usually designed for risk assessment or accidental 
release modelling.  It is not the purpose of the review to describe the models 
themselves but rather to acknowledge how different the models are in terms of 
incorporating meteorological observations and computing dispersion parameters, 
and to find which ones are more suitable to simulate changing meteorological 
conditions in each application 

A few factors need to be taken into account to decide which model is adequate 
for a given application.  When the worst-case condition is the requested outcome 
for the application, steady-state models used to be associated with statistical 
meteorology to fulfil this requirement.  Non-steady-state models are usually 
more sophisticated and include more complex parameterisations.  They also 
require more meteorological data input, more computer time and more 
expertise.  Whether the extra effort required to gather both data and expertise is 
really necessary depends on the application.  More specifically it depends on the 
type of application, the locations of the sources and receptors, source types, 
complexity and variability of the meteorology, desired accuracy of the results 
(i.e. highly accurate versus conservatism) and averaging time. 

Meteorological Data Availability 

Most countries in the world have their own network of meteorological 
measurements of surface and vertical profile parameters.  The coverage of such 
observations can be sparse in some areas and not available at the appropriate 
time step, however atmospheric dispersion modelling needs meteorological input 
without missing time steps and recorded as close as possible to the local area of 
interest.  Before the wide distribution of prognostic meteorological mesoscale 
models output were available, alternative methods to palliate missing data were 
developed, such as the use of statistical meteorological data to track the 
frequency of the worst meteorological conditions for dispersion.  Nowadays, in 
the UK and most developed parts of the world, data availability is no longer an 
issue since mesoscale forecast systems are routinely run by the local 
meteorological offices, providing both forecast and past analyses.  From those, 
single point meteorology time series or three-dimensional meteorological fields 
can be extracted and imported into steady-state models or top-of-the-line 
Lagrangian and Eulerian dispersion models, respectively.  Hourly mesoscale 
datasets are also computed by a number of organisations for most places in the 
world at 12km and 4km resolution.  Such multi-year global datasets are 
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available for instance from the UK Met Office or from the MM5 dataset developed 
by TRC (TRC-ASG website: http://www.src.com/mm5/MM5_Main_Page.html). 

Computer time 

Current IT advances make computer time no longer an issue, except possibly for 
real-time emergency response applications.  A full year and four sources can be 
simulated on a domain of 200 x 200 grid points with a Lagrangian dispersion 
model such as CALPUFF in a few hours.  By increasing the number of grid cells, 
and the number of receptors, the computer time will augment accordingly.   

Expertise 

Expertise is required for developing and applying any dispersion models.  
However once a system is set-up, non-experts can usually perform further 
applications and interpret them.  The experience of users, the air quality 
ambient standards, and the consistency with previous studies have to be taken 
into account in the choice of a model. 

Accuracy versus Conservatism 

Simple steady-state dispersion models are commonly used in the UK for 
regulatory impact assessment for all averaging periods.  The argument to justify 
their use even for non-steady-state application is that they are simple, easy to 
use and usually provide a conservative estimate of concentration impact.  
Although, this is a general statement and the users need to be aware that in 
certain meteorological conditions the opposite can be true and steady-state 
models can simulate lower concentrations than non-steady-state models.  As 
shown in section 4.1 and 4.2, steady-state models do not always give the 
highest concentrations for short-term averaging and in the vicinity of the source. 
For long-term averaging (such as annual averages), the long-range study 
performed by Lutman et al. (2004) showed that the simple steady-state model 
results always exceeded the Lagrangian model concentrations at very long 
distance (over 200km away from the source).  However in that study, steady-
state model results did not simulate the highest impacts at distances between 
100 and 200km from the source. 

Averaging Time 

A requirement for either peak hourly concentrations or annual averages impacts 
on the model choice.  Applications looking at short-time averages must be able 
to represent extreme, often non-steady-state events.  The importance of 
isolated extreme events decreases when long-term averages are of interest. 

5.2 Types of Dispersion Models 

All existing models cannot be described.  In this section, categories of models 
are differentiated from one another by how much and which type of 
meteorological information goes into the model and how meteorological and 
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dispersion parameters are computed internally.  The meteorological parameters 
that are important for dispersion modelling include directly measured 
parameters such as wind (speed and direction), temperature, and precipitation.  
Other parameters such as dispersion coefficient and mixing height can either be 
provided as observations or computed internally using surface friction velocity 
(u*), convective velocity scale (w*), Monin-Obukhov length, solar radiation, 
sensible and latent heat fluxes, stability classes and ground characteristics such 
as albedo and roughness length.  Most of the atmospheric dispersion models 
mentioned in this section are listed on the online European Model Documentation 
System (MDS) which can be consulted at 
http://pandora.meng.auth.gr/mds/strquery.php?wholedb for reference and for a 
more complete description of these models. 

5.2.1 Simple Gaussian Plume Models 
The simplest dispersion models are the simple Gaussian plume models.  A few 
examples of this type of model are R91, SCREEN, and PLUME (part of PCCREAM 
suite of models).  Most of these types of models can use sequential observed 
meteorology from one local station or statistical meteorological data computed 
from a number of years of sequential local meteorology and use defined stability 
tables for turbulence estimation.  A number of tables have been developed for 
various parts of the world and different applications.  An example of such table is 
the 60% Category D stability class distribution, which is a good assumption for 
meteorological conditions over the UK when considering long-term averaged 
impacts (Clarke R.H., 1979). 

5.2.2 Advanced Gaussian Plume Models 
The more complex Gaussian plume models such as ISC3, OLM, BLP, AERMOD 
and ADMS can also input statistical meteorology but more frequently incorporate 
one-dimensional sequential meteorological information.  This information can be 
direct observations from a meteorological station or output from a prognostic 
model.  It can consist of a full vertical profile or just surface observations.  Some 
other improvements that can be found in these models when compared to the 
simple Gaussian plume models are an increased knowledge of turbulence and 
diffusion in the planetary boundary layer, calculations on plume spread that are 
based on conditions occurring at the height of plume rather than at ground level 
and calculation of the vertical spread of pollutant by assuming it is non-gaussian.  
Dispersion coefficients are computed using micro-meteorological parameters 
such as surface friction velocity, Monin-Obukhov length, roughness length.  The 
Pasquill-Gifford-Turner (PGT) dispersion curves are used for this purpose.  These 
curves were developed using the Prairie Grasse experiment (Barad, 1958) and 
are more suitable for simulation in rural areas.  AERMOD imports the surface 
roughness length and the Monin-Obukhov length values at the closest 
meteorological station available and computes spatially constant dispersion 
coefficients.  ADMS imports Monin-Obukhov length, boundary layer height and 
the wind speed to estimate these coefficients.  The atmospheric turbulence is 
simulated in those models by the computation of dispersion coefficients.  The 
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simple (section 5.2.1) and advanced Gaussian plume models are steady-state 
models in the sense that the meteorological parameters imported or computed 
are constant spatially within the domain for each hour and that the conditions 
remain unchanged on the pollutant path between the source and any receptor, 
no matter how far from the source they are located.  Indeed, the assumptions 
for steady-state Gaussian plume models are constant condition within a time 
step (i.e. hour), straight-line trajectories, non-zero wind speed, no causality 
effect (do not account for travel time between the source and receptor) and no 
memory of the previous hour (each hour is separate and independent of 
previous hours).  Some of the models such as ADMS have options to treat calm 
wind conditions, to adjust the flow to topography or to import a file with spatially 
varying roughness length and create spatially varying dispersion coefficients 
which makes the modelling somewhat non-steady-state.  But these are only 
adaptations to the physical local conditions.  The source of meteorology stays 
one-dimensional and the time independence of these models prevents them 
from being fully non-steady-state. 

5.2.3 Lagrangian and Eulerian Models 
The common characteristics of the third group of models are that they can input 
a three-dimensional dataset of meteorological information and are non-steady-
state models.  Within this group, the dispersion models can be divided into a few 
other categories: the Lagrangian puff models, such as CALPUFF, UDM or 
SCIPUFF, the Lagrangian particle models such as NAME, MicroSpray, part of 
model system MSS (Tinarelli et al., 1994, 2000), AUSTAL, and QUIC-plume, and 
the Eulerian models such as CMAQ, EMEP Unified Model, and CALGRID.  Some 
other models such as TAPM, a hybrid Eulerian/Lagrangian or HYSPLIT (hybrid 
single-particle) also import three-dimensional meteorology.  As for the advanced 
gaussian models, these models compute dispersion coefficients internally with 
various refined parameterizations using imported or evaluated micro-
meteorological parameters.  The variation in parameterization of the dispersion 
coefficients from one model to the other can induce discrepancies between 
modelling results but probably less important than importing three-dimensional 
meteorological data rather than one-dimensional meteorological data when the 
impact due to changes in meteorological conditions between the source and the 
receptors is the main concern.  The non-steady-state models allow three-
dimensional meteorology, spatial variability to winds, turbulence fields, 
precipitation and temperature.  They allow variable and curved trajectories, 
spatial variability of terrain and landuse.  They retain information from the 
previous hour, allow calm wind and low wind speed conditions and include 
causality effects. 

Changes in wind direction and wind speed have probably the greatest impact on 
predicted concentrations at a given point.  As described in section 4.3, wind 
direction is used to estimate the path trajectory of the pollutant while wind 
speed is used to determine plume dilution and plume rise downwind of the 
source, which affects the magnitude of and distance to the maximum ground 
level concentrations.  Short-term averages are more sensitive to these changes 
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and long-term averages less so.  The issue is to determine how significantly 
results are affected.  Gaussian plume models incorporate wind data information 
from a local point (varying temporally only), which is used for the entire domain.  
The plume extends downwind from the source to infinity.  The winds are 
extracted at the source height for the more complex models and at ground level 
for the simple ones, and there is no memory of the previous time step.  Each 
time step of the modelling starts with a “clean” footprint.  Lagrangian puff 
models or Lagrangian particles models on the other hand incorporate three 
dimensional wind fields (varying spatially and temporally).  The distance 
travelled by the pollutant in this case is determined by the wind speed.  These 
models remember the previous hour modelled and the foot print resulting from 
the emission of the new time step is added to the previous time step footprint.  
These three characteristic discrepancies, (i) travel to infinity versus fixed finite 
travel distance, (ii) not remembering versus remembering the previous time step 
footprint and (iii) single point wind data versus three dimensional wind fields, 
have an effect on the location and the concentration of the highest peaks.  Any 
applications which are sensitive to the exact location and the amount of pollutant 
predicted display large discrepancies when using a simple Gaussian plume model 
versus a non-steady-state Lagrangian puff or particle model.  The shorter the 
time average impact the user is interested in, the stronger the discrepancies are. 

5.2.4 Other Models 
The Computational Fluid Dynamic (CFD) models (Code_Saturne (CFD RANS), 
FLUENT, MERCURE), which can more accurately resolve building structures, 
obstacles, and the flow around them can also be mentioned.  Other models 
designed for accidental release of dense and toxic gases such as HGSYSTEM, 
SLAB, DEGADIS, GASTAR, PEAC-WMD software are usually simple dispersion 
models importing simple meteorological data.  Some of these models, such as 
DEGADIS, use statistical type of meteorology and are unable to use sequential 
data. 

5.3 Evaluation Datasets 

Most field study databases which include all the information needed for model 
evaluation have in general been developed to improve atmospheric dispersion 
models.  These field studies were usually designed to evaluate specific 
characteristics of models.  Atmospheric dispersion datasets can be classified as 
follows: 

- Dense gas and toxic gas accident release studies (like for example SMEDIS) – 
very short-term emissions, receptors extended up to 6-10 km from the source – 
dense gas or neutral gas. 

- Turbulence / near-field tracer experiments - vicinity of the facility, flat terrain 
or simple terrain features – buoyant gas, continuous emissions, and receptors 
extended to 10-20 km, 50 km at most from the source. 
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- Long-range tracer experiments – short-term or continuous emission over a few 
days up to annual period of monitoring. – buoyant gas. 

- Other sets of experiments are developed to study circulation of pollution in 
urban areas, looking at the effects of buildings on flow.  For instance, wind 
tunnel experiments fall into this category. 

5.3.1 Dense gas and toxic gas accidental release studies 
A number of accidental release datasets were used by Hanna et al. (1993) to 
evaluate atmospheric dispersion models specialised for dense gas dispersion 
modelling.  Only a limited number of accidental releases, where hazardous 
chemicals purposely released into the atmosphere for field experiments, have 
been carried out and even fewer have their test results in the public domain.  
One of them for example, called “Goldfish Test Series”, was conducted during 
the summer of 1986 by Amoco Oil Company and Lawrence Livermore National 
Laboratory at the Haz Mat Spill Test Centre.  The tests consist of six anhydrous 
hydrofluoric acid releases.  The results are presented in a paper by Blewitt et al., 
1987.  A constant discharge rate is maintained during the test.  Receptors were 
placed on arcs at 300 metres, 1000 metres and 3000 metres downwind at a dry 
lake bed known as Frenchman Flat.  Like most of the existing control hazardous 
chemicals released, the winds blow in a predictable direction and are more or 
less constant during the time of each series and the meteorological conditions 
correspond to a “D” atmospheric stability.  This example demonstrates that the 
interest in the outcome of hazardous chemicals accidental release is the 
concentrations at a distance of less than ten kilometres and change in 
meteorological conditions have not yet been of strong interest.  During these 
types of experiments, which are of a short duration, the wind speed and 
direction are usually more or less constant and the meteorological conditions are 
neutral or stable in the Pasquill-Gifford definition.  The “Desert Tortoise” series of 
tests conducted in 1983, which released ammonia, are described in a report by 
Goldwire et al., 1985.  This second example also displays no interest in changing 
meteorological conditions: the receptors were placed up to 5600 metres from 
the source, the wind was constant for each series and the stability classes were 
either neutral or stable.  Only short-term change in meteorological conditions 
can have an effect on such an application.  If the toxics do not stay in a 
dangerous phase for a period long enough, a change in meteorological conditions 
in the few seconds or hours following the accident in most cases would not make 
a significant difference if simulated by a steady-state or non-steady-state model.  
The peak is estimated by both steady-state and non-steady-state models with 
only small discrepancies between the two relative to the degree of model and 
input data uncertainty.  However, if the toxics can stay in the atmosphere for a 
few hours to days and weeks with a concentration harmful to the human 
population or the environment, steady-state models can fail to predict the 
correct path and/or potential accumulation or deposition. 
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5.3.2 Near fields tracer experiments 

A large number of near-field tracer experiments have been conducted over the 
years for evaluating the performance of atmospheric dispersion models.  Three 
of them, developed on flat terrain areas, widely used for atmospheric dispersion 
models evaluation are Project Prairie Grass (1956), Kincaid (1980-1981) and 
Indianapolis (1985).  Project Prairie Grass is a tracer experiment of SO2 release 
in rural surrounding from a near ground level source.  The sample 
concentrations are 10-minute samples at downwind distance from the source 
from 50 m to 800 m.  Half of the samples were measured during daytime and 
half of them during nighttime (Barad, 1958; Haugen, 1959).  The Kincaid is a 
tracer experiment conducted at Kincaid which involved a release from a 183 m 
stack with a buoyant plume rise over a flat terrain rural area.  171 experiments 
were conducted.  Measurements were hourly for both near surface ambient 
concentration and meteorology.  Receptors arcs ranged from 0.5 km to 50 km 
from the source.  A large number of the measurements were recorded during 
the afternoon in spring and summer, period representative of daytime 
convective conditions (Bowne et al., 1983).  The Indianapolis SF6 tracer 
experiment is a complex urban site experiment conducted at Indianapolis city.  
It involved a release from an 84 m stack with buoyant plume rise.  
Measurements of hourly near surface concentrations at a distance of 0.2 km to 
12 km from the source and hourly meteorology (Murray and Bowne, 1988) were 
recorded.  For more extensive description of these near-field tracer experimental 
datasets or get access to other similar datasets, the US EPA website 
(http://www.epa.gov/scram001/dispersion_prefrec.htm) and John Irvin’s 
website (http://jsirwin.com/Tracer_Data.html) can be consulted.  Most of these 
tracer experiments are near-field applications in flat terrain environment, 
assuming non changing meteorological conditions.  However, some datasets, 
developed to test the limitation and refine steady-state models, may include 
some non-steady-state situations.  One of these datasets is a tracer experiment 
called the Tracy Power Plant Experiment.  The power plant is located on a flat 
plateau surrounded by terrain features.  Tracer gas was released through the 
91.4-m smokestack of an active power plant located near Reno in Nevada, US.  
Meteorological measurements from a 150-m tower are also available.  
Concentration monitoring in the surrounding terrain were done mostly during 
late evening and early morning hours.  The complex terrain features and the 
development of morning inversion layer, which breaks up as the sun rise, create 
non-steady-state conditions that could be used for sensitivity testing steady-
state models versus non-steady-state models in those conditions. 

In the UK, a few near-field tracer experiments data sets are also available.  For 
instance, three field tracer experiments (Technology And the Study of 
Atmospheric Dispersion in the Urban Environment) 
(http://urgent.nerc.ac.uk/Meetings/2001/Abstracts/simmonds.htm)) performed 
in Birmingham City, UK during 1999 and 2000 whose main goals were to test a 
new technique for measuring the tracer and also to provide the scientific 
community with a dataset for dispersion over spatial scales between 1 km and 
10 km.  However, experimental arrangement needed to be as simple as possible 
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from the dispersion point of view.  Near-neutral stability conditions and a wind 
speed of about 4-5 m/s were chosen in order to satisfy the requirements for the 
simplest meteorological conditions for the experiment.  These studies do not 
fulfil any changing meteorological conditions either. 

As we observed above, near-field studies have been deployed under a number of 
meteorological conditions (stable, neutral, convective, etc…) for testing the 
simulation of the early version of atmospheric dispersion models (mostly steady-
state models), but very few data sets available consider the impact and 
evaluation of models under changing meteorological conditions.  A possible 
explanation is that the first models were steady-state models and so the field 
studies were adapted to the characteristics of these models (indeed steady-
state).  More recent and more complex models with non-steady-state 
characteristics are also validated against these data sets and usually give a good 
performance. 

5.3.3 Long-range tracer experiments 
The best relevant field experiments which include changing meteorological 
conditions are the long-range Tracer Experiments.  However these tracer 
experiments being conducted to study long-range pollution impacts usually have 
their ground concentrations measurements starting at a distance more than 50 
km away from the source.  At such a distance, steady-state models are usually 
not the preferred models to be used. 

A large number of long-range experiments have been developed over the years, 
just a few are discussed here as examples.  For instance, the European Tracer 
Experiment (ETEX) project consisted of two releases to atmosphere of tracers 
sampled for three days after the beginning of the emission using a sampling 
network spread over a large part of Europe.  This experiment was performed to 
evaluate the performance of a large number of non-steady-state dispersion 
forecasting models.  Another example of such an experiment is the European 
eXport of Precursors and Ozone by long-Range Transport (EXPORT).  The 
primary objective of EXPORT was to characterise and quantify the photochemical 
air pollution formed over Europe and exported eastwards from Europe.  The data 
held at BADC was collected during a co-ordinated three aircraft flying campaign 
in August 2000 based at Oberpfaffenhofen in Southern Germany.  Measurements 
were made of many photochemical parameters including ozone, its precursors, 
other oxidants and both gas phase and particulate tracers in the air over Europe 
and that being transported eastwards out of Europe. 

Five other long-range tracer experiments data can be accessed in the Data 
Archive of Tracer Experiments and Meteorology (DATEM).  This archive provides 
an opportunity to link high quality modern meteorological data with the data 
from five long-range tracer experiments performed over the United States from 
1974 to 1987: 1) ACURATE – the Atlantic Coast Unique Regional Atmospheric 
Tracer Experiment from 1982 and 1983, 2) ANATEX – the Across North America 
Tracer Experiment from 1987, 3) CAPTEX – the Cross Appalachian Tracer 
Experiment from 1983, 4) INEL74 – Idaho National Engineering Laboratory 
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releases in 1974 and 5) OKC80 – a single tracer release from Oklahoma City in 
1980.  Currently, only longer range (hundreds to thousands of km downwind) 
experimental data are considered (Draxler et al. 2002).  The U. S. National 
Center for Environmental Prediction (NCEP)/National Center for Atmospheric 
Research (NCAR) meteorological re-analysis using historical data (1958-1997) 
and analysis of the atmospheric state during this period have been enhanced 
with many sources of observations not available in real time for operations, 
provided by different countries and organizations.  The measurements of 
concentrations vary from 12 to 24 hour averaged concentration over a period of 
19 months (ACURATE- the Atlantic Coast Unique Regional Atmospheric Tracer 
Experiment from 1982 and 1983 (Heffter et al., 1984)) to 3 hour samplings on a 
period of a few days (OKC80 – a single tracer release from Oklahoma City in 
1980 (Ferber et al, 1981)). 

5.3.4 Urban Tracer Experiments 
Experiments studying atmospheric dispersion in urban areas were developed and 
are available for roads and streets in many cities of the world.  One example of 
these types of experiment is the DAPPLE (Dispersion of Air Pollution and 
Penetration into the Local Environment) project which has been deployed since 
2003.  Four field campaigns have been completed between 2003 and 2008 in 
and around the intersection of Marylebone Road and Gloucester Place in London.  
Such observational datasets are examples of local urban experiments developed 
to test the performance of urban dispersion models.  By bringing together 
fieldwork, wind tunnel and computational simulations, it is expected to provide a 
better understanding of the physical processes affecting street and 
neighbourhood scale flows of air, traffic and people.  However, for such 
experiments, the dates and timing are usually chosen with meteorological 
conditions as stationary as possible to be able to study the flow around buildings 
for certain wind directions for instance. 

5.3.5 Other Experiments 
In addition, experiments which involved meteorological measurements in non-
steady-state situations are available and could be of interest for testing the 
performance of steady-state models versus non-steady-state models in changing 
meteorological conditions.  These experiments provide only meteorological 
support for the sensitivity analyses.  They can not be used for evaluating models 
since the sources characteristics and emissions are not provided and the 
pollutant concentrations are not monitored as it is in tracer experiments.  They 
can nevertheless be used to compare the sensitivity of atmospheric dispersion 
models in non-steady-state meteorological situations.  A couple of 
meteorological experiments are described below. 

The Improved Air Quality Forecasting (ISB52) experiment, concentrating on 
studying meteorological flow parameters, was developed to gain a better 
understanding of air flow within the atmospheric boundary layer in the vicinity of 
an urban area by gathering three-dimensional air flow information using two 
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identical Doppler lidar measurements.  Field experiments were undertaken in 
March 2003 at Malvern and in July 2003 at RAF Northolt, West London, UK 
(Bozier et al., 2004, Davies et al., 2007).  The March 2003 experiment during 
winter type conditions under an anti-cyclonic system recorded the effect of a 
temperature inversion at night, while the July 2003 experiment covered a wide 
range of meteorological conditions during summer varying from large scale anti-
cyclonic systems to small scales features such as showers and thunderstorms.  
Comparisons with a couple of models regularly used in the UK such as the UK 
Met Office air quality forecasting model NAME or ADMS were performed. 

A second set of meteorological data archived at the British Atmospheric Data 
Centre (BADC) is the surface meteorological data and high resolution radiosonde 
data from the Met Office’s research site in Cardington, Bedfordshire.  The 
dataset contains recorded surface measurements timed at 1, 10 and 30 minutes 
intervals.  Wind is measured at 10 meter, 25 meter and 50 meter above the 
ground level.  Some measurements performed at the Cardington research site 
on the period August, September and November 2005 were used for testing 
improvement methods of low speed wind simulation in TAPM model (Luhar, 
2007).  Low wind speed condition is not exactly changing meteorological 
condition but it is a situation non-steady-state plume models usually can not 
simulate (except if a specific option to treat cam wind conditions as in ADMS-4 
was added) due to their non-steady-state assumptions. 

5.4 Sensitivity Tests in Changing Meteorological 
Conditions 

Potential discrepancies between steady-state model impacts versus non-steady-
state model impacts for a number of applications have been discussed in the 
previous sections of this review.  Although the discussions were mostly 
qualitative, it would be very useful to be able to quantify these differences to 
validate the choice of modelling with one type of model or the other.  We are 
proposing a selection of tests to be performed in future work to fulfil this goal.  A 
choice of datasets, models and type of tests are discussed below. 

Datasets needed for a thorough atmospheric dispersion models evaluation in 
changing meteorological conditions require a complete set of information which 
includes local meteorological measurements during the event, accurate emission 
rates and measurements of concentrations and/or flux depositions at a number 
of receptors of interest.  The meteorological and emission data are used as input 
into the model to be evaluated and measurements of concentrations and/or flux 
depositions compared to the model output simulations.  However, unless a field 
experiment is specifically designed to study an event or certain characteristics of 
a model, all information required is not always available.  Despite an extensive 
number of field experiments described in section 5.3, it appears that changing 
meteorological conditions are of concern mostly for long-range tracer field 
experiments.  However, long-range tracer experiments are not suitable for 
evaluating steady-state models, especially at short-term time scales. 
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A few of the near-field experiments described in section 5.3 documents changes 
in meteorological conditions and represents non-steady-state situations.  The 
Tracy experiment is an example including changing meteorological conditions 
which are the breakup of morning temperature inversions.  The ISB52 field 
experiment studies atmospheric processes in an urban area and the Met Office’s 
research site in Cardington, Bedfordshire could provide high resolution 
meteorological data for low wind speed conditions.  These two latter datasets 
focus on measurements of meteorological parameters but provides neither 
source emission rates nor concentration measurements.  A third field 
experiment, called the Kwinana coastal study, was developed in Western 
Australia to study shoreline fumigation under sea breeze conditions (Sawford et 
al., 1996).  More information is provided in section 2.2.6 and meteorological 
data, emission releases and pollutant concentrations might be available from this 
study. 

We propose to use some of these experiments to develop a matrix of sensitivity 
tests to compare steady-state models versus non-steady-state models results in 
a number of non-steady-state situations.  If observed concentrations are not 
available, model simulations might be compared to one another for an 
estimation of the discrepancy between models. 

Changes in meteorological conditions are either directly linked to the physical 
characteristics of the area of interest or can happen anywhere.  A local analysis 
of the characteristics of the modelling domain should assess whether the area is 
subject to either coastal fumigation or land/sea breezes, for instance if there is 
the presence of a water body in the vicinity of the source or whether the area is 
subject to valley/mountain breezes if the location of interest is in a mountain 
area, etc…  Local recirculation and pollutant accumulation can result from such 
situations however steady-state models cannot reproduce such phenomenon.  In 
addition, or if the terrain of the local area is not complex, a number of questions 
still need to be raised.  Some questions are more relevant if peak concentrations 
or worst-case scenarios are of concern, such as: 

- What is the frequency of meteorological conditions leading to calm 
wind, morning fumigation, recirculation? 

- Will the steady-state model always give the worst-case scenario or 
the highest peak? 

If the exact path or exact location of a peak pollution event is of concern, one 
has to track the frequency of meteorological conditions leading to a change of 
path for the pollutant, such as front passage, the possibility of precipitation 
along the path, etc… 

For any outcome, to determine the frequency of changing weather patterns is 
crucial if looking at long-term events since if the pattern is frequent enough it 
could have an impact on long-term averages.  Figure 18 displays a diagram 
showing a proposed procedure to determine if a non-steady-state model may be 
needed for the application of interest.  This diagram raises potential questions a 
user could ask and is not assumed to be exhaustive.  Figure 18 shows the 
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potential complexity of the situations and puts into perspective where sensitivity 
tests between steady-state and non-steady-state models could be relevant to 
quantify their discrepancies. 

Five selected non-steady-state situations are proposed for testing the sensitivity 
of steady-state models and non-steady-state models and for comparing the 
results of the models with observations, when it is possible.  Table 3 summarizes 
the selected sensitivity tests.  Three different types of models are proposed to be 
tested: a simple gaussian plume model (such as SCREEN or PLUME), a more 
complex gaussian plume model (such as AERMOD or ADMS-4) and a Lagrangian 
model (such as NAME or CALPUFF). 

One test is specific for studying the impact of local land characteristics on 
atmospheric dispersion.  The Kwinana field experiment includes all the data 
necessary for evaluating models in shoreline fumigation effects situations.  
Results of all three models applied with this dataset are compared to 
observations for quantifying the discrepancies.  A second test will look at low 
wind speed conditions and how significant the discrepancies could be whether 
such situation is simulated with a steady-state or non-steady-state model.  Two 
of the tests could use the field study ISB52, which provides meteorological 
observations as a three-dimensional field.  Data for a few of the changing 
meteorological conditions events described earlier in this review are available in 
the ISB52 experiment: temperature inversion and morning inversion break-up 
and passage of fronts with showers/thunderstorms.  The timescale is a few 
hours to a few days in the near-field.  We suggest studying an elevated source 
and a ground source and to look at the concentration impacts of these sources 
for receptors located at distances from 1 to 10km from the sources using all 
three types of models mentioned previously.  A thorough comparison of the 
outputs of the models is proposed to quantify the significance of discrepancies.  
For the morning fumigation, the Tracy power plant datasets could be used as a 
second dataset for testing the sensitivity of the models in this type of 
meteorological situations. 

The proposed procedure shown on Figure 18 diagram to determine whether 
steady-state models are suitable or not for a specific application could be tested 
in parallel to the sensitivity studies.  The computation of a steady-state index is 
also proposed to document each test. 

Note that the suggested sensitivity tests are subject to the acceptance from the 
authors to grant access to their datasets. 
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6 CONCLUSIONS 

The short-term impact in the vicinity of an accidental release can be addressed 
with steady-state modelling if the meteorological conditions are not too complex 
and the impact is relatively close to the facility.  If micro-meteorological 
properties vary sharply (such as at a close offshore or coastal location or for a 
release near sunrise), non-steady-state modelling may be required to address 
the complex changing meteorological conditions.  For long-range transport, since 
the meteorological conditions are unlikely to remain constant along the plume 
trajectory, non-steady-state modelling must be performed. 

For risk-assessment, the frequency of the worst-case scenario is of interest, so 
changing meteorological conditions that can lead to peak impacts of pollution are 
the most important to single out and determine their frequency on the path 
between source and receptors.  Typical situations include local areas subject to 
land/sea breezes or mountain/valley flows, or other types of air flow 
recirculation but also shoreline fumigation, areas with frequent morning 
fumigations or frequent long periods of calm wind conditions.  If any of these 
situations are simulated with steady-state models, results must be treated with 
caution, since the examples cited above are situations where steady-state 
models may predict lower peak concentrations than non-steady-state models. 

For regulatory impact studies, highest peak concentrations are usually of 
primary interest for averaging periods varying from sub-hourly to annual.  The 
distance from the source at which the highest peaks occur is also of interest.  
Steady-state models are acceptable in most near-field situations however if the 
characteristics of the area are complex and flow recirculation or alternative 
weather pattern, leading to pollutant accumulation are common in this area, the 
use of a non-steady-state model should be considered.  For any long-range 
applications, steady-state models are not usually recommended. 

In conclusion, each type of application needs to be treated differently, a number 
of questions need to be raised and local meteorological analysis is advised to 
determine the potential for substantial change in meteorological conditions which 
could have an impact on the outcome of the application.  A number of external 
factors listed below such as availability of correct meteorology, CPU time, 
consistency with other studies, etc… may also need to be taken into account in 
the selection of the appropriate model. 

Questions to be raised:  Initially, the question relates to the outcome of the 
application.  Is the pollutant path or the pollutant concentration at the receptors 
the main focus of the study?  Secondly, the relation to the concentration itself is 
important.  How accurate does the simulation of the concentration need to be? 
Are we looking for a conservative estimate or a concentration as exact as 
possible?  Most steady-state models predict a straight line path so are adequate 
for potential constant wind speeds and direction conditions between the source 
and receptor.  Steady-state model concentration predictions tend to be 
conservative estimates at a certain distance from the source.  So, for more 
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precise concentration estimates, the use of non-steady-state models may be a 
better choice. 

Time Scale: Firstly, for annual average estimates of pollutant concentrations, 
using steady-state or non-steady-state models in changing meteorological 
conditions might not impact significantly on the results in the vicinity of the 
release.  For a long range application, the choice of meteorological input might 
be important.  The use of statistical meteorological data with steady-state 
models is more likely to give conservative results at long-range receptors.  
Whether this is what the regulatory agency and the industries are expecting for 
the application can be debated.  Whether the results are conservative or not at 
any distance from the release with this type of modelling is still a question.  
Some experimental modelling may be necessary to evaluate such statements. 

Over short time scales, changing meteorological conditions are more likely to 
have an impact on the outcome of the applications.  Using steady-state models 
for long-range applications at this timescale is not recommended.  For near-field 
application, a study of the local area is recommended to estimate if changing 
meteorological conditions are likely to occur with a high frequency and what 
changing meteorological conditions must be present to determine if such 
changes lead to accumulation of pollutant or deviate the pollutant from a 
straight trajectory.  The outcome of the application for short timescales is thus 
also important information to have in mind.  If the exact path of pollutants is of 
concern and changing meteorological conditions can divert the trajectory of the 
pollutant, steady-state models are likely not to be appropriate for such 
modelling.  If the worst-case scenario or peak concentration for a specific 
averaging period is required, any changes in meteorological conditions leading to 
pollutant accumulation are not simulated correctly with a steady-state model. 

Meteorological data availability: Each time a non-steady-state model may be 
potentially a more acceptable choice the user should determine if the 
meteorological data required is readily available and consider the effort needed 
to access this meteorological dataset.  Nowadays, even if observed 
meteorological data are not available in the vicinity of the modelling domain, 
prognostic meteorological datasets can be accessed from a number of websites 
(like the Met Office, or TRC-ASG, etc…).  With a grid resolution high enough, 
these datasets can have better world wide coverage than actual meteorological 
observations.  The user needs to have the capability to evaluate the provided 
prognostic meteorological datasets or request a thorough evaluation from the 
provider to make sure it is reliable and adequate for the intended application. 

Additional factors need to be taken into account when choosing between a 
steady-state model and a non-steady-state model. 

CPU Time: The facility and rapidity to run the atmospheric dispersion model can 
be an important factor in the decision.  There used to be a significant difference 
in CPU time between running simple steady-state models and complex non-
steady-state models.  With current computer capabilities, this is less of an issue. 
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Uncertainties: A number of uncertainties are inherent to model 
parameterisations, meteorological parameters, source characteristics, input data 
and concentration measurements.  Discrepancies between models outputs and 
observations may need to be put in perspective with these potential 
uncertainties to identify their significance. 

Type of Source: Elevated sources are more likely to be affected by change in 
meteorological conditions than ground sources.  Continuous releases are steady-
state while intermittent releases are non-steady-state and might need to be 
modelled with non-steady-state models for accuracy in the results. 

This review aimed at understanding the potential discrepancies between 
dispersion modelling using steady-state and non-steady-state models in 
conditions where meteorological parameters change substantially and gave a 
qualitative interpretation of the potential differences in impact that can occur.  
However, a quantification of such discrepancies is necessary before giving 
thorough recommendations.  The development and application of the sensitivity 
tests to be developed in future work may help to quantify the discrepancies and 
provide some guidance regarding atmospheric dispersion modelling in changing 
meteorological conditions. 
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9 TABLES 

Table 1 Meteorological conditions and applications classified by Time Scale 
Time Scale Change in Meteorological conditions Applications 
Minutes to one 
hour 

- Gust front / outflow boundary 

- Thunderstorm / Squall lines 

- Light wind speed – meandering 

- Change in Precipitation 

- Short-term accidental release 

- Odour modelling 

- forecast modelling 

- real-time operational modelling 

- Long-range modelling (local changes along the path after release) 

Hours to one day - Air Recirculation (Land/Sea breeze; Mountain/Valley flow,…) 

- Urban Heat Island effect 

- Inversion break-up fumigation 

- Shoreline fumigation 

- Light wind speed follow by frontal gust 

- Change in Precipitation 

- Short-term accidental release 

- Odour Modelling 

- Forecast modelling 

- Real-time operational modelling 

- Regulatory Impact Assessment (hourly averaged impact) 

- Cumulative Impact Assessment 

- Long-range modelling (local changes along the path after release) 

- Risk Assessment 

- Volcanic Eruption, Fire 

 A few days - Recirculation happening on a number of consecutive days 
(Land/Sea breeze, Mountain/Valley flow,…) 

- Anticyclone situation and the sub-meteorological conditions that 
can happen under this situation (radiation temperature inversion in 
winter 

- Succession of frontal passages 

- Regulatory Impact assessment (daily averaged impact) 

- Cumulative Impact Assessment 

- Risk Assessment 

- Long-range accidental release 

- Volcanic Eruption, Fire 

Months/Annual - High frequency of any of the above - Regulatory Impact Assessment (monthly or seasonal averages, 
annual averages) 

- Cumulative Impact Assessment 

- Risk Assessment 

- Long-range Accidental release 

- Volcanic Eruption, Fire 
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Table 2 Changing meteorological conditions and their possible impact on receptors and type of applications 
Meteorological 
Parameter 

Change in Meteorological conditions Consequences on Receptors Applications 

Change in 
Wind Direction 

- Gust front / Outflow boundary 

- Thunderstorm / Squall lines 

- Urban Heat Island effect 

- Change the location of impact - Short-term accidental release 

- Odour modelling 

- forecast modelling 

- real-time operational modelling 

- Long-range applications (local changes 
along the path after release) 

- Volcanic Eruption, Fire, Sand Transport 

- Cumulative Impact Assessment 

- Light wind speed – meandering 

- Air Recirculation (Land/Sea Breeze; 
Mountain Valley flow, etc…) 

- Light wind speed follow by frontal gust 

- Create pollutant accumulation and so 
subject to potential high concentrations 

Change in 
Wind Speed 

- Gust front / outflow boundary 

- Thunderstorm / Squall lines 

- Air Recirculation (Land/Sea breeze; 
Mountain/Valley flow, etc…) 

- Urban Heat Island effect 

- Light wind speed follow by frontal gust 

- Change in dilution 

- Change in dispersion 

- Change in distance from the source 
maximal impact 

- Short-term accidental release 

- Odour Modelling 

- Regulatory Impact Assessment 

- Forecast modelling 

- Real-time operational modelling 

- Regulatory Impact Assessment (hourly 
averaged impact) 

- Cumulative Impact Assessment 

- Long-range modelling (local changes along 
the path after release) 

- Risk Assessment 

- Volcanic Eruption, Fire, Sand Transport 

Change in 
Mixing Height 

Or Change in 
Turbulence / 
Stability class 

- Urban heat Island effect 

- Inversion break-up fumigation 

- Shoreline fumigation 

- Land/Sea Breeze 

- Change in ground concentration 

- Change in dilution 

- Change in dispersion 

- Elevated sources 

- Regulatory Impact assessment (daily 
averaged impact) 

- Cumulative Impact Assessment 

- Risk Assessment 

Change in 
Precipitation 

- Thunderstorm / Squall lines 

- Frontal Passage 

- Wet deposition 

- Remove pollutant material from air  along 
path 

- Volcanic Eruption, Fire, Sand Transport 

- Long-range applications (local changes 
along the path after release) 

- Regulatory Impact Assessment (hourly 
/daily / annual averaged impact) 
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 Table 3 Proposed studies for testing steady-state versus non-steady-state models 
Test Dataset Change in Meteorological 

conditions 
Time Scale Distance from 

Source 
Impact Comments 

Test 1 Kwinana Shoreline Fumigation Short-Term (1h-
, 24h-averages) 

Near-field 
(within 10km) 

Peak 
Concentration 

Coastal location, under sea-
breeze conditions 

Test 2 Tracy Power 
Plant 

Morning Fumigation Short-Term (1h-
average) 

Near-field 
(within 10km) 

Peak 
Concentration 

Complex Terrain study – not 
exactly strictly variation due 

to meteorology 

Test 3 ISB52 Passage of Front / Precipitation Short-Term (1h-
, 24h-averages) 

Near-field 
(within 10km) 

Path / Wet 
Deposition 

Only meteorological data 
available 

Test 4 Cardington, 
UK 

Low wind speed conditions Short-Term 
(sub-hourly, 1h-

average) 

Near-field 
(within 10km) 

Peak 
Concentration 

Only meteorological data 
available 

Test 5 ISB52 Morning Fumigation Short-Term (1h-
average) 

Near-field 
(within 10km) 

Peak 
concentration / 

Path 

Only meteorological data 
available 
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10 FIGURES 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 Atmospheric Dynamic Spectrum classified by temporal and spatial scales 
(reproduced from Orlanski, 1975) – The terms in parenthesis along the timescale row 
are physical parameters known to be controlling each particular range of time scales. 
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Figure 2  Example of stationary High Pressure centred on Norway for a 4-day 
period (January 9, 2010 (top left), January 10, 2010 (top right), January 11, 2010 
(bottom left) and January 12, 2010 (bottom right) 



FIGURES 

CONTRACT REPORT FOR ADMLC 63 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3  Table 5 (From Scire and Chang, 1991) shows how high ozone 
concentrations happen when the temperature at 850mb is usually high.  The maximum 
occurrences are recorded in the month of September 
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Figure 4  Example of a fast moving Low pressure from the South West toward the 
North East region of Europe (Feb 27, Feb 28 and March 1, March 2, 2010) 
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Figure 5  Plots showing the passage of an outflow of a weak thunderstorm on Jun 
9, 1991 between approximately 1300 and 1630 local time (From Bowen, 1996) 
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Figure 6  Four plots showing vertical profile of wind speed, wind direction and 
horizontal and vertical variation of wind before (1230 LST) and during (1430 LST) the 
passage of an outflow of a weak thunderstorm on Jun 9, 1991 (From Bowen, 1996) 
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Figure 7  Figure 8 from Zhang and Rao (1999) shows the correlation of change in 
temperature vertical profile and ozone vertical profile for two separate events (17 June 
1995 at Manassas, VA (top) and 14 July 1995 at New Haven, Connecticut (bottom)). 
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Figure 8  Schematic illustration of coastal fumigation (from Luhar and Sawford, 
1995) 
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Figure 9  Figure 16 from Kurita et al., 1990 shows the diurnal variation of the 
combination of meteorological events resulting in diurnal changing meteorological 
conditions. 
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Figure 10 Figure 15 from Kurita et al., 1990 shows a combination of meteorological 
events (land/sea breeze, onshore wind, slope/valley wind and plain/plateau wind) 
resulting in changing meteorological conditions. 
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Figure 11 24h-average SO2 concentration simulated using a simple Gaussian model 
(steady-state) on the left and a Lagrangian puff model (non-steady-state) on the right 
(from animation developed for CALPUFF Training by the Atmospheric Study Group 
(ASG), Earth Tech.).  This Figure shows the potential 24h concentration footprint 
discrepancies between a steady-state model and a non-steady-state model 
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Figure 12 hour 9 average SO2 concentration simulated using a simple Gaussian 
model (steady-state) on the left and a Lagrangian puff model (non-steady-state) on the 
right (from animation developed for CALPUFF Training by the Atmospheric Study Group 
(ASG), Earth Tech.).  This figure shows much larger concentration for the steady-state 
model and a curved trajectory for the non-steady-state model 
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Figure 13 Hour 4 average SO2 concentration (a few hours earler than Figure 12) 
simulated using ISC, a simple Gaussian model (steady-state) on the left and CALPUFF, a 
Lagrangian puff model (non-steady-state) on the right (from animation developed for 
CALPUFF Training by the Atmospheric Study Group (ASG), Earth Tech.).  This plot shows 
lower concentrations for the steady-state model and completely different location of 
impact.  On the right side, there has been accumulation of concentration.  On the left 
side, the highest impact is at the edge of the domain. 
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Figure 14 H2S averaged concentration on the period 8/8 (16h) to 8/10 (10h), year 
2006, modelled by CALPUFF using model defaults -  hourly meteorological data, 
horizontal sigma=0.5 m/s and a calm threshold of 0.5m/s (top), versus 6-minutes 
average meteorological data, horizontal sigma=0.2 m/s and a calm threshold of 0.5m/s 
(bottom) (From Barclay, 2008).
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Figure 15 1-hour peak ground level H2S concentration modelled using model 
defaults - hourly meteorological data, a calm wind speed threshold of 0.5 m/s, 
minimum horizontal sigma = 0.5 m/s and internally computed turbulence parameters 
(top) versus 10-min peak ground level H2S concentration using 10 minute 
meteorological data, a calm wind speed threshold of 0.5 m/s, minimum horizontal 
sigma = 0.2 m/s and real time turbulence parameters (bottom) – Both are computed 
with CALPUFF code on the year 2006 period: 8/8 at 16h to 8/10 at 10h (From Barclay, 
2008). 
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Figure 16 Cumulative Impact Assessment for NAAQS compliance – The facility of 
interest is on the Western side, embedded in a land breeze circulation (July 7, 1988 – 
1pm Local Time).  Two neighbouring facilities are located closer to the coast and 
experience sea breeze conditions.  Straight plume model AERMOD’s trajectories (shown 
as blue lines on the bottom right picture), using meteorological information from the 
most inland station, do not reflect the current situation; three-dimensional Lagrangian 
puff model CALPUFF’s impacts do (pink ground concentration contours) - (From Scire, 
2009) 
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Figure 17 Terrain Channelling Effect – The facility of interest (INKOM) is located 
within a deep curving valley.  Straight plume modelling with AERMOD (bottom left, 
blue) shoots the INKOM plume toward the valley sides and over the mountains.  
Lagrangian puff modelling with CALPUFF (top, pink) correctly models the curved 
trajectories. The Straight plume model (AERMOD) also fails to correctly model the 
cumulative impact of the other 2 sources in the area, FMC, HOSP (bottom right) – (From 
Scire, 2009) 
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Figure 18 Proposed procedure to determine whether a steady-state model or a non-
steady-state model should be used for the application of concern. 
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Source Term Estimation and Event Reconstruction: 
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Redwood M 

ABSTRACT 
 

In recent years the field of source term estimation and event reconstruction has 
developed greatly. This report provides a comprehensive review of the current 
state-of-the-art in the field. 

A broad investigation into methods across the many applications of source term 
estimation has been conducted. A set of comparison characteristics is 
constructed to enable a coherent review of these methods. The models are 
discussed in relation to these characteristics with introductions to the 
mathematical techniques used and references to papers that deal with specific 
techniques in more detail. All the models are compared against these 
characteristics and the results presented in a table format which acts as a quick 
reference guide to the information sourced during the literature review. 
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EXECUTIVE SUMMARY 

Characterising the source of an atmospheric pollutant is an important area of 
research with many environmental, industrial, public health and defence 
applications. Applications include characterising the spread of a pollutant in the 
atmosphere or locating a gas leak on an industrial plant. Source Term Estimation 
(STE) is concerned with estimating the source term parameters (location, mass, 
time of release, etc.) of a pollutant given a set of observed data. 

There have been many recent advances in the field of STE and this report 
provides a comprehensive review of the state-of-the-art in the field. A broad 
review of literature has been conducted and many subject matter experts in 
academia and industry were consulted. This report summarises the findings of 
the review. 

To enable a coherent comparison of the various models, a set of comparison 
characteristics has been constructed. All the models have been compared 
against the characteristics set out in this report and the tables in APPENDIX A 
provide a quick reference guide to models with particular characteristics. The 
table in APPENDIX B groups the various models by the context of the STE 
problem considered. 

The estimation and optimization techniques covered in this paper are not 
problem specific. They are mathematical techniques and can be applied to any 
STE problem irrespective of the context. The comparison characteristics aim to 
capture the various algorithms of the STE models mentioned in this report. 
These characteristics then allow the reader to ascertain papers that have dealt 
with a STE problem with similar characteristics irrespective of the application. 

There are many important factors to consider when selecting an appropriate STE 
technique and they have been highlighted throughout this report. Various 
different structures of STE model have been discussed and some of the 
important considerations have been highlighted. Irrespective of the application, 
the majority combine a goodness-of-fit measure and optimization technique 
along with an Atmospheric Dispersion Model (ADM). 

One difficulty with many STE techniques is that an initial point is required to 
start the algorithm. The success of some techniques can be affected greatly by 
the accuracy of this initial guess, especially when considering a problem of high 
dimensionality. Evolutionary Algorithms (EA) and population Markov Chain Monte 
Carlo (MCMC) algorithms are more robust to this issue as they effectively 
initialize with a number of initial starting points instead of just one. This 
increases the likelihood of an initial guess being close to the actual solution. 

Bayesian inference methods are widely used, especially in the defence sector. 
Where some methods require a minimum amount of data before the problem 
can be solved, Bayesian methods allow for a “best guess” solution with the 
available data, no matter how vague. It is also possible to quantify the 
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uncertainty in the solution by capturing the posterior probability distribution 
successfully. 

The traditional Kalman Filter (KF) assumes a linear dynamical system and for 
this reason is not suitable for most STE applications. Some non-linear extensions 
to the KF have been applied to sequential STE problems with varied success. The 
Particle Filter is a widely used alternative, often combined with a Markov Chain 
Monte Carlo approach in a two stage inference system. 

Data assimilation techniques have only been applied to STE problems in a limited 
capacity. Due to the inherent errors in both modelled and observed data, data 
assimilation techniques can be particularly useful as they have the ability to 
optimize agreement between the two sets of data. However, both a forward and 
adjoint dispersion model are required. 

Whilst analysing the results of the initial literature review and preparing this 
report, the search of academic literature continued. This uncovered further 
papers that could be of interest. APPENDIX D details those papers that, due to 
time constraints, have not been reviewed. The review of these papers in the 
structured setting of this report would provide further insight into the extensive 
work undertaken in the field of STE. 
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1 INTRODUCTION 

 

Characterising the source of an atmospheric pollutant is an important problem 
with many environmental, industrial, public health and defence applications. 
Atmospheric dispersion models are commonly used to model the spread of a 
pollutant through the atmosphere. One common issue is defining the original 
source of this pollution. No matter how accurate a dispersion model is, without a 
‘good’ estimate of the pollutant source the modelled plume will not be an 
accurate representation of the actual pollutant in the atmosphere. For this 
reason, one important area of development in the atmospheric dispersion 
community is Source Term Estimation (STE). 

STE, also known as event reconstruction, source characterisation or inverse 
modelling, is concerned with estimating the source term parameters (location, 
mass, time of release, etc.) of a pollutant given a set of observed data. The 
number of source term parameters to be estimated typically ranges from one to 
four for a single release, dependent on the application. 

In recent years much work has taken place developing and applying new 
techniques to STE problems. This report provides a comprehensive review of STE 
methods and recent developments in the field. 

 

Figure 1: Flow diagram of a typical source term estimation algorithm. The dotted 
line illustrates that some STE algorithms iteratively feed the estimated source 
term back into the algorithm forming a closed loop. This loop is then broken 
when a threshold is met. 

Typically, STE models involve three different components, a goodness-of-fit 
measure, an optimization technique and an Atmospheric Dispersion Model 
(ADM). Figure 1 illustrates how the three components are commonly combined 
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in a source term estimation algorithm. Given a hypothesised source term, the 
ADM is used to create a modelled data set. This modelled data set is then 
compared with the observed data set using the goodness-of-fit measure. The 
optimization technique searches the solution space defined by the goodness-of-
fit measure to give the ‘best’ source term estimate. Other, less common forms of 
STE model do exist and will be covered throughout this report. 

Comparison characteristics have been constructed to compare the various STE 
models developed in the academic community and industry. Models have many 
similarities and differences and the comparison characteristics allow for a 
structured review of the methods. Below is a list of comparison characteristics 
used in this report. 

a Source term parameters to be estimated (e.g. location, mass, time, 
etc.) 

b Type of Atmospheric Dispersion Model used 
c Input data types 
d Sequential or block estimation model 
e Domain size 
f Goodness-of-fit measure used 
g Optimization technique used 
h Types of release to be estimated 
i Whether uncertainty in the source term estimate is quantified 

 
These comparison characteristics also allow the report to act as a quick point of 
reference to the wealth of papers published in the field. For instance, papers 
using a specific technique or implemented on a particular domain size can be 
easily identified. APPENDIX A contains tables that detail each of the STE models 
covered in this report against these comparison characteristics. 

The estimation and optimization techniques covered in this paper are not 
problem specific. They are mathematical techniques and can be applied to any 
STE problem irrespective of the context. At the outset an understanding of the 
STE problem should guide the selection of a technique rather than the context of 
use. For instance, the ability to characterise uncertainty, the parameters to be 
estimated, and any computational or time constraints are some of the important 
considerations. The comparison characteristics aim to capture the important 
elements of the STE models mentioned in this report. These characteristics then 
allow the reader to ascertain papers that have dealt with a STE problem with 
similar characteristics irrespective of the application. 

When initially considering a STE problem, readers are likely to seek papers 
describing models for a similar context of use. To aid in this search the table in 
APPENDIX B groups the models in this way. 

Section 2 defines these comparison characteristics and discusses their 
importance when implementing a STE model. An overview of some of the most 
widely used goodness-of-fit measures and optimization techniques are given in 
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Sections 3 and 4 respectively. Section 5 then moves on to sequential techniques 
that allow for the continuous update of a source term estimate as data arrives. 

Some STE techniques and models have a different structure to those set out in 
the preceding chapters. The first of these is plume tracking which is covered in 
section 6. This is an alternative to STE that predicts the movement of the 
resultant plume instead of the actual source term itself. Section 7 looks at 
variational data assimilation. This is a technique that combines forecasted and 
observed data to estimate a “best guess” for the current state of the system. A 
cost function that balances the error in both sets of data is minimized. Section 8 
then appraises some specific post event studies. 

Meteorological requirements are a very important consideration of any STE 
model and in section 9 some of these are examined. In section 10 the 
construction of a STE model is discussed bringing together the main points made 
throughout this report. Section 11 then summarises the report and finally 
recommendations are made in section 12. 

2 COMPARISON CHARACTERISTICS 

The STE comparison characteristics, outlined below, have been designed to give 
a basis for the review of the various models detailed in this report. In APPENDIX 
A the properties of each model are reviewed against these characteristics. In the 
following sections each of the comparison characteristics is defined individually. 

2.1 Source term parameters estimated 

This refers to the actual source parameters that the model aims to estimate. 
These include: 

a Location of release 
b Mass/Emission rate 
c Time of Release 
d Duration 
e Number of releases 
f Meteorological parameters 
g Probability of a release having occurred 
h Type of material released 
 
2.2 Atmospheric Dispersion model 

Dispersion models are an important part of most STE algorithms. The dispersion 
model is used to model the actual dispersion of a hypothesised source in the 
environment. If this is not an accurate representation then it is likely any STE 
algorithm will perform poorly. 
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Some dispersion models are only accurate over a limited domain range; hence 
domain size is a very important consideration when selecting a dispersion model. 
Dispersion models are a large area of study on their own and are not the main 
focus of this report. For this reason specific ADM’s used are not mentioned, but 
rather the broad group the model falls into is noted. A brief description of each 
group follows. Moving down the list the models generally increase in complexity 
and required computational power. 

a Gaussian Plume 
A steady state model where the pollutant cloud is represented by a 
plume with a Gaussian shaped cross-section. 

b Gaussian Puff 
The pollutant cloud is represented by a series of Gaussian shaped puffs. 

c Particle Models 
A series of particles is transported through space and time from the 
source. The ensemble of these particles represents the transport of 
material through the atmosphere. 

d Eulerian Models 
Numerical solutions to fluid flow problems such as the Navier-Stokes 
equations. 

 
Some complex atmospheric dispersion environments involve a combination of 
different techniques such as the Met Office’s Numerical Atmospheric-dispersion 
Modelling Environment (NAME). Where these models have been used it is 
specifically mentioned in APPENDIX A. Beyond stating that a solution to an 
advection-diffusion equation is used, some papers do not define the specific ADM 
used.  These models are noted as such. 

2.2.1 Adjoint Models 
Some of the dispersion model groups mentioned above can be run as an adjoint 
model, which effectively runs the dispersion model backwards in time. Instead of 
running a dispersion model from source to sensor as in a forward dispersion 
model, an adjoint model essentially runs the dynamics of a system backwards 
from the sensor to the source. In a STE algorithm using an adjoint model can be 
quicker when the number of source terms to consider is greater than the number 
of data points. This is because the adjoint ADM would be used to run an adjoint 
dispersion for each data point as opposed to a forward dispersion model being 
used for each possible source term. It should be noted however, that some 
dispersion models do not have adjoints that match the forward run (e.g. puff 
splitting or building interactions in urban areas).  

2.3 Data types 

This characteristic details the types of information the model is designed to take 
as input. The non-exhaustive list below contains some examples. 

a Concentration measurements 
b Medical surveillance data 
c Population data 
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d Emissions inventories 
e Personnel observations 
f Material Detection 
 
2.4 Sequential/Block techniques 

Source term estimation methods can be split into two groups, sequential and 
block techniques. Sequential techniques (see section 5) work in real time, with 
data added to the model as it arrives. These methods can give continuous 
updates on a dynamic system. Below are some applications of sequential STE 
techniques. 

a An industrial leak at an engineering site ([1]) 
b A chemical/biological attack ([2], [3]) 
 

Computational constraints are an important consideration when using a 
sequential technique. If estimates of the source term are required in near real-
time, a limited number of calculations can be carried out between estimates. In 
many STE algorithms the most computationally intensive section is the repeated 
calculation of the dispersion model. This often leads to a limit in the complexity 
of the dispersion model used for a sequential STE algorithm. 

Block techniques require all data to be available prior to initiating the model. 
New data cannot be added to the model once it has been initialised. Some 
applications of block techniques are given below. This list is divided into two 
groups reflecting the two general types of situation, during and post event, when 
block techniques are used. 

During Event 

a Location of oil reservoirs through released hydrocarbon gasses ([4]) 
b Location and spatial extent of a biological attack ([5]) 

 
Post Event 
c Estimation of air pollution sources on continental scales ([6], [7]) 
d Estimation of local pollution pre-cursors ([8]) 

 

The first of these two groups is during an event with the model run several times 
as new data arrives. Whilst the mathematical techniques used are different to 
those for a sequential technique, the application may have only subtle 
differences. For instance, if the speed at which data arrives allows the model to 
be run many times during an event then the implementation of a block 
technique may be preferable.  

The second situation is post event where time constraints are not an issue. This 
allows for a greater volume of computation to take place. Post event 
applications, such as the estimation of air pollution sources, can involve data 
collected over many years. 
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2.5 Domain size 

For the purposes of this report domain size has been split into four categories. 

a Indoor 
b Small   < 1km 
c Medium   1km to 10km 
d Large  > 10km 
 

Many of the methods detailed in this report have only limited testing reported in 
the stated papers. Due to this, no direct conclusions can be drawn about the 
application of the methods in domains of differing sizes. However, where used, 
the accuracy of the dispersion model on the domain size of interest, accuracy 
due to limitations in meteorological data and the dispersion model itself, is a 
significantly limiting factor. A technique used successfully on a small size domain 
may well be equally successful on a large domain with the use of an appropriate 
dispersion model. The applicable domain size mentioned in APPENDIX A is based 
entirely on the domain sizes mentioned in the relevant paper and does not 
comment on the viability of the methods in a different domain size. 

2.6 Types of Release 

This characteristic is used to group together models that aim to estimate similar 
source terms. It also states whether the case of more than one simultaneously 
occurring release is considered. It is divided into three categories as follows. 

a Instantaneous 
b Continuous 
c Multiple 

 

Instantaneous releases are a subset of the continuous category and are used to 
model explosive releases. They are continuous releases but with a very small 
release duration. Multiple releases can include a number of purely instantaneous, 
purely continuous or a mixture of both instantaneous and continuous releases. 

It should be noted that the categories are from the perspective of what types of 
release a model considers not a category for the type of release. A model, such 
as one for a pollution emissions problem or a release following a terrorist attack, 
may consider both instantaneous and continuous releases. As can be seen in the 
table in APPENDIX A, applicable models are categorised as both continuous and 
multiple. 

The continuous category includes releases that occur for a finite period of time 
and as such have a defined start time, stop time and release rate. This category 
also includes releases that, for the purposes of modelling, continuously release 
material and have no defined stop time. For certain STE applications, a 
continuous release is the only type of release that is applicable, for instance 
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when considering a leak from a chemical plant or characterising pollution 
emissions. 

2.7 Characterization of uncertainty 

Understanding the uncertainty involved in the solution to any estimation or 
statistical problem is very important and STE is no different. In some cases, for 
instance in homeland or military defence, STE solutions may support decision 
makers where lives could be at risk and hence quantifying the uncertainty in any 
estimate is crucial. 

The final column of the tables in APPENDIX A state whether the estimation of 
uncertainty has been directly addressed in the paper for the relevant model. 
Where a paper has been noted as not directly addressing this issue, the addition 
of this characteristic may be an easy next step. Bayesian techniques are one 
example of this. In Bayesian techniques (see section 3.3) the spread of the 
posterior probability distribution characterises the uncertainty in the solution. 
Models that successfully capture this posterior distribution would be able to 
characterise the uncertainty. However, due to the wide scope of this review, the 
ease of this addition to specific models is not discussed. 

3 GOODNESS-OF-FIT MEASURES 

Search and sampling techniques, which are discussed in section 4, can only 
search within the solution space defined by the goodness-of-fit measure. The 
‘goodness of fit’ of a particular source term estimate or updated state estimate 
to the observed data set provides a function to be maximized with respect to the 
source term parameters. Often, the function can be inverted to form a cost 
function that must be minimized. Some more advanced optimization algorithms 
also use properties of the goodness-of-fit measure (e.g. its derivatives with 
respect to the source term parameters) to direct the next step in the search 
algorithm. 

This section is devoted to an overview of some of the main goodness-of-fit 
measures used in STE with a discussion of the papers using the methods. The 
table in APPENDIX A details the goodness-of-fit measure used by a particular 
model. 

3.1 Goodness-of-fit for Convex Optimization 

Convex optimization is concerned with the minimization of convex functions and 
is an extensive field of study in mathematical optimization. Interested readers 
are directed to [9] for a detailed review of the topic. Two specific cases of 
convex optimization, where the p-norm of a vector is used as the inverse of the 
goodness-of-fit measure, and therefore minimized, shall be briefly looked at. The 
p-norm of a vector U= ],...,[ 1 nuu  is defined as 
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In STE these methods aim to minimize the “distance” between predicted and 
actual data sets. The first and probably best known of these convex optimization 
techniques is Least Squares Estimation (LSE). 

3.1.1 Least Squares Estimation 
In LSE the 2-norm squared is minimized, 2p = . Let ),...,( 1 ndd=D  be the set of 

observed data and ),...,()( 1 nyyf =θ  be the modelled data set when a 

hypothesised source term θ  is modelled using the dynamic system (i.e. the 
ADM) defined by (.)f . The least squares source term estimate, LSEθ , is then 

given by 

2
2||)(||minarg θθ

θ
fLSE −= D .  (2) 

Least squares estimation is used by [10] along with the MATLAB minimization 
routine fmin to estimate the mass, location and time of release of pollution from 
an accidental gas release. The statistical basis constructed allows for the 
quantification of uncertainty in the estimated source term parameters. The study 
also illustrates that to successfully estimate all parameters using this method, 
concentration data is required from at least three spatial locations. To test the 
method, synthetic forward data of an instantaneous point source over a medium 
sized domain is generated. The authors conclude that future work will extend the 
method to estimate continuous releases with constant and variable release rates. 

Issues with co-located data when using a least squares approach are also 
encountered in [7]. The paper investigates probable sources of green house 
gases on a continental domain with data measured at one sensor location over a 
time period of several years. This complex problem involves an unknown number 
of sources. To circumvent the issues encountered the authors assumed all 
sources contributing to the data had equal emission rates. 

In [11] the authors discuss some issues with their formulation of the least 
squares approach. Through the use of an example, they illustrate how the 
complexity of the function that is to be minimized increases as the number of 
sensors increases. This in turn increases the complexity for any search algorithm 
and possibly makes the problem intractable. To circumvent these issues they 
develop a new two stage approach using a solution to an advection-diffusion 
equation as the ADM. The first step involves determining the set of points upon 
which the source could be placed given each individual sensor measurement. In 
an advection free case where only diffusion is present, these points would form 
concentric circles around each sensor. For a given sensor measurement each 
concentric circle relates to a different possible source rate. These source rates 
increase in strength as the distance from the sensor increases. It should be 
noted at this point that for a given sensor measurement the source could be 
placed near the sensor (with a small source rate) or far away from the sensor 
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(with a large source rate). In the second step an intersection point of all the 
circles (one circle for each sensor measurement) is found by varying the source 
rate. This intersection point is then the estimated source position. When an 
advection term is included the set of points around each sensor become oval 
shaped and the intersection point is similarly found by varying the source rate. 

Aerodyne Research Inc, Massachusetts, USA, have a novel approach [13] that 
uses a least squares approach to estimate the source term parameters of 
multiple pollutant sources. An Automatic Differentiation tool is used to generate 
adjoint differentiation code from the computer code for a forward Gaussian puff 
model. Given the computer code for a forward model, an Automatic 
Differentiation tool automatically computes the analytical gradients of model 
outputs to inputs. Using this adjoint differentiation code, a customised search 
algorithm is then employed that minimizes the cost function with the computed 
gradients allowing for a more efficient optimization process. To allow for multiple 
source terms the algorithm is repeated several times, each time adding an extra 
source into the algorithm. The model has also been validated using field data 
from the Fusion Field Trial 07 experiments [14]. 

Least squares estimation does not make any assumptions about the distribution 
of errors in the data set. The authors of [15] state that “If these errors are 
independent and identically distributed zero-mean Gaussian random variable, 
then the least square estimate coincides with the maximum likelihood estimate”. 
Maximum Likelihood Estimation is discussed in section 3.2. 

3.1.2 Least Absolute Errors 
Least Absolute Errors (LAE) or 1  minimization involves the minimization of the 

1-norm of a vector. Using notation as above the LAE source term estimate, LAEθ , 

is given by 

1||)(||minarg θθ
θ

fLAE −= D .  (3) 

[16] uses a grid based LAE method for the identification of multiple radioactive 
sources. The domain is discretized to limit the possible locations of sources to a 
finite, but large, number. Each possible location then forms an element of the 
vector describing the estimated state of the system. The solution is, therefore, 
expected to involve a sparse vector since it is likely that very few of the grid 
points will actually contain a source. Due to this, the authors state that LAE is 
preferred to LSE since the solution of the minimum 1-norm is sparser than that 
of the minimum 2-norm. Therefore, by using LAE a sparser solution vector is 
favoured. The method is then extended to the use of atmospheric dispersion 
models to estimate parameters in a Chemical, Biological, Radiological and 
Nuclear (CBRN) incident [17]. 

3.2 Maximum Likelihood Estimation 

Maximum Likelihood Estimation (MLE) aims to select the model parameter 
values that are most likely to have resulted in the set of observed data D. In a 



 

16 CONTRACT REPORT FOR ADMLC 

STE setting, the maximum likelihood estimate is the source term, MLEθ , that 

maximizes the likelihood function. 

)|,...,(maxarg 1 θθ
θ nMLE ddp=   (4) 

[18] describes a MLE approach to detect vapour emitting sources using an array 
of chemical sources. The MLE technique is combined with Monte Carlo (4.3) 
sampling and a solution to the advection diffusion equation to infer the most 
likely source term estimate of a continuous release. The method is tested 
against generated synthetic data and noise is included to test the model’s 
sensitivity against measurement and dispersion model error. 

[15] discusses two issues with a MLE approach. Firstly, that MLE is highly 
dependent on initial parameters and as a consequence algorithms of this type 
usually need to be run more than once. The second issue discussed is that MLE 
does not provide any method for characterising the uncertainty involved in the 
solution. As discussed earlier, characterising the uncertainty is an important 
consideration in any estimation problem. [18] addresses the second of these 
issues by comparing the performance of the maximum likelihood estimate with 
the Cramer Rao lower bound. 

In the single variable case, the Cramer Rao lower bound provides a lower bound 
on the variance of the estimator. In the multivariate case, such as with most STE 
problems, the Cramer Rao lower bound provides a lower bound on the elements 
of the covariance matrix of the estimator. Each element of the co-variance 
matrix specifies the covariance of the corresponding two variables of the 
estimator. The diagonal elements of the covariance matrix specify the variance 
of the variables. By using this method a lower bound on the variance of each 
variable of the estimator can be sought. If the likelihood function approaches the 
Normal distribution then the Cramer Rao lower bound will be reasonable 
estimate of the true uncertainty. However, if the likelihood function is leptokurtic 
then it may be a poor estimate of uncertainty. The performance of a STE model 
could be compared with the Cramer Rao lower bound for a particular scenario. 
Given a different scenario, the new calculated value of the Cramer Rao lower 
bound and the previous comparison could be used to make predictions about the 
uncertainty of the solution in this new scenario. 

 

3.3 A Bayesian Approach 

Bayesian inference is a widely used approach in source term estimation. In 
Bayesian inference, prior knowledge about the probability of a hypothesis is 
combined with the likelihood of this hypothesis, given the observed data, to 
produce the posterior probability that this hypothesis has occurred. The posterior 
distribution of the set of all hypotheses is calculated using Bayes’ rule [19], 
which links the prior distribution and the likelihood. 

Bayes’ rule is defined as, 
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( ) ( | )( | )
( ) ( | )

P PP
P P d

θ θθ
θ θ θ

=
∫

DD
D

,  (5) 

where notation is defined as previously, with θ  being the (unknown) source 
term and D the observed data. A more common representation is as follows: 

( ) ( )


( )
priorposterior likelihood

p p pθ θ θ∝D D
 

 .  (6) 

The function )(θp  is referred to as the prior distribution, which is the probability 

of the source term parameters prior to data being processed. The function      
(p D )| θ  is the likelihood distribution, which is a measure of how likely the data 

is given a particular source term. The function |(θp D )  is the posterior 

distribution, which indicates how likely the source term parameters are, given 
the data. 

Often an analytical solution does not exist due to the complicated nature of the 
likelihood function. For this reason optimization and sampling techniques, which 
will be covered in section 4, are used to explore the posterior distribution. 
Specific models using a Bayesian approach are discussed in relation to their use 
of these techniques. 

4 OPTIMIZATION AND SAMPLING TECHNIQUES 

Optimization algorithms explore the solution space defined by the estimation 
technique in search of the global optimal solution. Evolutionary algorithms and 
Monte Carlo methods are two distinct branches of sampling techniques which are 
both designed to find globally optimal solutions rather than highly accurate 
locally optimal solutions. In addition, certain sampling techniques can be used to 
quantify estimate uncertainty. Firstly, the use of Simulated Annealing (SA) as a 
STE technique is discussed. 

4.1 Simulated Annealing 

SA is a probabilistic optimization technique that aims to mimic the process of 
thermodynamic cooling. When equipped with a cost function and an iterative 
search algorithm, usually containing a random component, SA guides the 
acceptance or rejection of the next hypothesis postulated by the search 
algorithm. To escape local minima, a hypothesis which increases the value of the 
cost function is accepted on a probabilistic basis. 

Let E∆  be the change in the value of the cost function between the thn  and 
thn )1( +  iteration of the search algorithm. If E∆  is negative then the hypothesis 

is accepted. If E∆  is positive then the hypothesis step is accepted only if the 
following criterion holds true. 
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

 ∆−

   (7) 

In the above expression T  is a temperature or cooling parameter and ( )1,0U  is 

drawn from the uniform distribution on the interval [0,1]. Following each 
iteration, the cooling parameter T  is reduced, lowering the acceptable increase 
in the cost function according to  

)1(1 ε−= −nn TT   (8) 

where ε  is a small positive scalar. 

[4] employs a SA based search algorithm to search for a known gas source over 
a large area. Oil and gas reservoirs leak hydrocarbons to the surface and the 
plume created can be used to characterise the likely location of reservoirs of 
these highly valuable resources. On this scale, the search area would consist of 
hundreds of squared kilometres and the data collected would be concentration 
measurements taken at ground level. Many surveys on this scale have been 
carried using a highly sensitive atmospheric ethane sensor to collect data and 
the method outlined in [4] is the first steps towards fusing this data for the 
purpose of locating the gas source. Typically upwards of 4 million iterations of 
the algorithm were run and the value of ε  was set such that T  was 
progressively reduced to zero. 

Although the intended future application is on the scale mentioned before, the 
successful initial testing of the algorithm focuses on an 8 square kilometre area. 
Due to its intended application the algorithm is a block estimation technique 
where a single sensor is used to collect readings over a survey site. The location 
and strength of a continuous gas release are sought. 

4.2 Evolutionary algorithms 

Evolutionary algorithms use principles inspired by the biological fields of genetics 
and natural selection to evolve a solution to an optimization problem. They are 
iterative algorithms equipped with tools for escaping local optima in search of 
the global optimal solution. Evolutionary algorithms can be split into two areas, 
Genetic Algorithms (GA) developed by Holland and Evolutionary Strategies (ES) 
developed by Rechenberg[21] and Schwefel ([20],[21],[22]). Many similarities 
exist between the two methodologies, a short introduction to which follows. 

4.2.1 Genetic Algorithms 
Genetic Algorithms (GA) begin with a population of chromosomes where each 
chromosome is made up of a number of genes. For application to STE each gene 
is a source term parameter (e.g. time of release, x location, y location, and 
mass) and a set of genes make up a chromosome (hypothesised solution). The 
GA is equipped with a cost function by which the fitness of each chromosome 
can be measured. 
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The operations of mating and mutation then explore the solution space creating 
a new generation of chromosomes at each iteration. Mating involves two 
processes, selection and cross-over. Selection is the process of choosing which 
two chromosomes to mate and cross-over is the process of blending the two 
selected chromosomes to form offspring. Mutation involves a random selection of 
genes being replaced with a value from the parameter space drawn at random. 
The process of mating encourages convergence to the minima whilst mutation 
gives the algorithm the ability to escape local minima in search of the global 
minimum solution. See [23] for a more detailed introduction to GA. The general 
steps of a genetic algorithm are detailed below: 

Genetic Algorithm 

1. Generate population of randomly selected chromosomes 

2. Evaluate cost function for each member of population 

3. Rank population in order of performance 

4. Generate new population via mutation and mating with highly ranked 
chromosomes 

5. Evaluate cost function for each member of population 

6. Rank population in order of performance 

7. Truncate the population to predetermined limit 

8. Repeat from step 4 until convergence criteria met 

 

The selection of population size, mutation and crossover rate are critical to the 
successful implementation of a Genetic Algorithm. The best fit chromosome, the 
chromosome which gives the minimal value of the cost function, at each 
iteration is often kept and excluded from the processes of mutation and mating. 
This is known as elitism and is employed in [23]. 

Pennsylvania State University has published several papers that develop a 
genetic algorithm based STE model. Initial research [24] focused on a model 
coupling a forward dispersion model with a Chemical Mass Balance (CMB) 
receptor model. In this coupled model, the GA is used to optimize a calibration 
factor that apportions source contributions to the observed concentrations. The 
model is further validated using synthetically generated noisy data [25]. [26] 
incorporates a more advanced Gaussian puff dispersion model into the STE 
model with further testing on both synthetically generated and field data. 

The group then change the formulation of the problem and use the GA to 
actually optimize the source term parameters themselves [27]. This formulation 
of the GA fits with the initial description above where each chromosome is a 
hypothesised solution. Each chromosome is made of four genes, the x & y 
location, source strength and wind direction. Uniform meteorology over the 
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domain is assumed. The inclusion of wind direction in the chromosome 
addresses the issue of uncertainty in this uniform meteorology. The method is 
then validated using synthetically generated noisy data. Meteorological 
uncertainty is discussed in more depth in section 9.  

4.2.2 Evolutionary Strategies (ES) 
 

Whilst evolutionary algorithms in general are heuristics based on biologically 
inspired iterative processes, ES address continuous parameter optimization 
problems in particular [28]. As with GA, ES begin with a population of candidate 
solutions and via the processes of mating and mutation a new generation of 
candidate solutions is born at each iteration. The main difference from GA is the 
make up of these individual chromosomes. Generally in an ES each chromosome 
is made up of two parts, the set of candidate genes { }mxxx ,...,, 21=θ  and a 

corresponding set of mutation parameters { }mσσσ ,...,, 21 , giving each 

chromosome the form 









=
m

mxxx
c

σσσ 



,,
,,

21

21 .  (9) 

The mutation parameters guide the stochastic variation of their respective 
candidate parameter during the process of mutation. 

As with GA, many different strategies for mating and mutation have been 
developed. [28] uses an adaptive evolutionary strategy that contains only one 
set of mutation parameters for each population of chromosomes (i.e. 
{ }mσσσ ,...,, 21  is equal for all members of a population at a particular iteration) 

and combine this with Monte Carlo sampling. For each iteration the current set of 
best fit chromosomes are cloned and then mutated by a stochastic value drawn 
from the normal distribution ),0( iN σ . The standard deviation, iσ , for the thn  
iteration is itself a stochastic value drawn from the normal Distribution )1,0(N  

and modified by the ratio of mutated clones improving on their parents fitness at 
the thn )1( −  iteration. This method aims to control the magnitude of the 

mutations as the algorithm converges. 

[28] uses a Gaussian plume dispersion model to generate modelled data for 
each hypothesised source term. The normalised root mean square error between 
the modelled and measured data set is used as the cost function. Field data from 
the Prairie Grass field experiment is used to validate their approach and the 
results were compared with a simple ES and a Monte Carlo only approach which 
were used as bench marks. The authors state that the adaptive evolutionary 
strategy implemented “has achieved both higher accuracy compared to the 
benchmarks and a much faster rate of convergence” [28].  
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4.3 Monte Carlo Methods 

Monte Carlo methods are computational techniques that repeatedly draw random 
samples to compute their results. With the increase in computer power these 
techniques have become increasingly popular to solve optimization and 
integration problems. Some models use simple Monte Carlo sampling ([18], 
[29]), however the vast majority use more advanced Markov Chain techniques 
that propose the next sample based on the sample at the previous iteration. An 
introduction to some of techniques is given below. Interested readers are 
directed to [30] where a more comprehensive introduction to these techniques in 
a STE setting is given. 

4.3.1 Markov chain Monte Carlo 
The Markov Chain Monte Carlo (MCMC) approach draws samples from a Markov 
Chain that has the target probability distribution as its stationary distribution. In 
Bayesian inference this target distribution is the posterior distribution. The next 
hypothesis in the chain, )(nθ , is generated using the previous hypothesis )1( −nθ  
along with a probabilistic proposal mechanism that details how this is done. 

To estimate the source term parameters of a leak on an oil & gas extraction 
plant, [31] uses Bayesian inference with MCMC to sample the posterior 
distribution. A Computational Fluid Dynamics (CFD) model is used to model a 
hypothesised source term and the posterior probability is calculated. The next 
hypothesised source term in the Markov Chain is then generated based on the 
previous step. Initial testing of the model using synthetically generated data has 
shown promising results and the authors continued work focuses on testing 
using real field data. 

[32] uses a similar approach for STE on a small domain size. However one 
significant difference does exist. To cut the computational requirements of the 
model a finite element dispersion model is used to compute a library of 
dispersion runs prior to the initialisation of the model. The compromise to this 
reduction in computational requirements is that the accuracy of dispersion 
simulations is reduced. When a dispersion run for a particular set of parameters 
is required, interpolation between the dispersion runs in the library is used. The 
model also runs multiple Markov Chains, typically four, which allows for 
convergence monitoring. 

The Metropolis algorithm is a MCMC algorithm employed in [33] for STE of a 
chemical or biological release. This paper also introduces stochastic turbulent 
diffusion parameters into the Gaussian plume dispersion model. These 
parameters are estimated by the STE algorithm along with the parameters of the 
release itself. 

The Bayesian Aerosol Release Detector (BARD) algorithm [34] was designed to 
estimate the source term of a covert Anthrax release. The model employs a form 
of Monte Carlo integration known as Likelihood Weighting to sample the 
Bayesian posterior distribution. Pre-diagnostic (syndromic) medical surveillance 
data is used along with a Gaussian plume dispersion model to estimate the 
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location, quantity and time of release. In [35] BARD is extended to incorporate 
commuting data into the model to give a better representation of population 
densities during the period in question. 

[5] uses a MCMC sampling technique to estimate the source term of a covert 
Anthrax release using post-diagnostic (clinical) medical surveillance and 
meteorological data similar to the problem considered by [34]. The authors state 
that whilst BARD performed well when releases resulted in a large number of 
pre-diagnosed cases, it performed poorly on smaller outbreaks. Hence, a MCMC 
sampling algorithm is developed that aims to characterise the release from the 
first few observed cases. Similar to [35], population movements and densities 
are also incorporated into the model. 

As in [32], often a population of k  Markov chains is used. After a large number,
N , iterations of the Markov Chains, the population of hypotheses, )( N

kθ , is used 

as a sample from the target distribution. Differential Evolution Markov Chain 
Monte Carlo (DE-MC) is one such algorithm a short introduction to which follows. 

4.3.1.1 Differential Evolution Markov Chain Monte Carlo 
DE-MC combines MCMC with the differential evolution optimization algorithm 
[36]. It is a population MCMC algorithm where multiple Markov chains are 
evolved simultaneously. The next generation of the population is formed from 
the weighted differences of randomly selected pairs of hypotheses from the 
current generation. [15] states that when using a MCMC approach, defining an 
appropriate scale and orientation for the proposal distribution is often not 
straightforward. By using pairs of hypotheses from the current population, DE-
MC overcomes this issue. The whole parameter space can be explored whilst 
focusing attention on regions where the density of the population is greatest. 

4.3.2 Recent developments in Monte Carlo Modelling 
 

4.3.2.1 Approximate Bayesian Computation 
Approximate Bayesian Computation (ABC) is a recent advance in the area of 
Bayesian computation. It allows estimation and prediction in the presence of an 
intractable likelihood function as the explicit evaluation of the likelihood function 
is removed. It is applicable to both MCMC (section 4.3.1) and Particle Filters 
(section 5.2) and a proof of principle for STE with an unknown number of 
releases is detailed in [37]. The methodology for ABC has only been established 
in recent years and as such literature on its application to STE problems is 
limited. 

4.3.2.2 Metropolis-coupled reversible jump Markov Chain Monte Carlo 
An issue with STE of an unknown number of sources is that, depending on the 
problem definition, the dimensionality of the solution space may vary. Consider a 
problem where the two dimensional location, time and mass of the release are 
sought. With a single source term there is a four dimensional solution space. 
However, when considering a STE problem with an unknown number of sources, 
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the solution space is n-dimensional where n is now only fixed to be a multiple of 
four. This increases the complexity of the problem greatly. 

Defence Research and Development Canada (DRDC) have developed a model 
called urbanSOURCE [3] that uses a Bayesian based Metropolis-coupled 
reversible jump Markov Chain Monte Carlo approach to solve a STE problem 
involving an unknown number of source terms. It uses two adjoint dispersion 
models, a numerical solution to an adjoint advection-diffusion equation and an 
adjoint stochastic particle model, to model concentrations at sensor locations. 
The model has also been validated using both the URBAN 2003 field experiment 
and the European Tracer experiment data sets. 

5 SEQUENTIAL TECHNIQUES 

Sequential techniques can update the state of a system, be that an actual source 
term estimate or an estimate of the resulting polluted area (see section 6), in 
real time as data arrives. In this section there is an introduction to some of these 
techniques and the STE models that use them. All of the techniques described in 
this section are Bayesian in origin. 

Firstly the Kalman Filter (KF), a recursive Bayesian filter for exact inference in a 
linear dynamical system, and some non-linear extensions to it will be discussed. 
Following that, the Particle Filter, also known as Sequential Monte Carlo, a 
technique often used as an alternative to these non-linear extensions shall be 
investigated. 

5.1 Kalman Filter 

The KF is a recursive technique modelled on a Markov Chain that updates a 
dynamic state vector describing the state of a system. As new data arrives a 
new estimate for the state of the system is produced based on the previous state 
vector and this new data (see [38]). 

It assumes a linear dynamical system perturbed by Gaussian noise. Due to this 
assumption of a linear dynamical system, the traditional KF is not suitable for 
most STE problems. Many variations have been developed from the original KF. 
Some non-linear extensions to the KF that have been applied to various STE 
problems include the Extended Kalman Filter (EKF) and the Unscented Kalman 
Filter (UKF). 

5.1.1 Extended Kalman Filter 
The EKF is one of the most widely used sub-optimal non-linear extensions to the 
KF. Given a non-linear dynamic system, linear approximations are used to 
characterise the non-linear state transitions. At each step the previous state 
vector is transitioned through these linear approximations to produce an 
estimate for the current state of the system. Due to these linear approximations, 
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the EKF performs poorly if the dynamical system is highly non-linear. For a more 
in-depth introduction to both KF and EKF see [38]. 

The authors of [15] found that, when applied to radiological point source 
estimation, the EKF tended to diverge. The paper also investigates the UKF 
which is discussed in the next section (5.1.2). 

[39] compares the performance of the EKF approach with that of the Particle 
Filter (section 5.2) when applied to the tracking of contaminant clouds (section 
6). They found that “while both filters are comparable in terms of estimation 
performance, Particle Filter offers significant advantages in terms of ease of 
implementation and memory requirements”. 

5.1.2 Unscented Kalman Filter 
The KF and EKF involve updating a covariance matrix at each time-step. This can 
be computationally unfeasible for systems of high dimensionality. In 1997 a new 
non-linear extension to the KF, the UKF, was published [40]. The authors aimed 
to overcome some of the issues which had arisen whilst using the EKF. 

“Although the EKF (in its many forms) is a widely used filtering strategy, over 
thirty years of experience with it has led to a general consensus within the 
tracking and control community that it is difficult to implement, difficult to tune, 
and only reliable for systems which are almost linear on the time scale of the 
update intervals.” [40]  

The UKF uses a sampling technique known as the unscented transform to 
deterministically choose a minimal set of sample or sigma points from the 
Gaussian approximation to the posterior distribution at the previous step. These 
points are propagated through the true nonlinearity, and the mean and variance 
of the Gaussian approximation are then re-estimated [41]. 

The authors of this report have found few publications on the use of UKF as a 
technique for solving STE problems. As mentioned earlier, the authors of [15] 
found improved performance when using the UKF opposed to the EKF. 

One significant limitation of these variations of the KF is the assumption of a 
Gaussian posterior distribution. Particle Filters (PF), which are discussed in the 
next section, do not make these assumptions about the posterior distribution. 

5.2 Particle Filters 

The extensions to the KF discussed above are both sub-optimal in a Bayesian 
sense. The PF while still classed as sub-optimal, does however approach the 
optimal Bayesian solution as the sample size of particles is increased if the 
computational power available is sufficient. 

When a dynamic source term estimation technique is used, the posterior 
probability distribution of the source term parameters is continually changing as 
new data is received. Similar to the KF, the PF approach, also known as 
Sequential Monte Carlo, creates a Markov Chain through the time steps. In a PF 
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algorithm the posterior distribution is represented by a population sample of 
particles. 

The PF is a large area of study and many algorithms have been developed in 
recent years. As an introduction, a simple resample move particle filter algorithm 
is described below, see [42] for more details. For a more detailed introduction to 
PF and an overview of various algorithms see [41] and [43]. 

5.2.1 Simple Particle Filter Algorithm 
The algorithm begins with a population of n particles ),( j

i
j

i wθ  that represent the 

posterior distribution, )D|( iip θ , at the thi  time-step, j=1,..,n, where, in a STE 

setting, each contains a sample source term, j
iθ , and an associated normalised 

weight, j
iw . 

At each new time step 1+i , as new data arrives, a two step process takes place. 

1. Generate a new population of particles, j
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5.2.2 Discussion of Particle Filters 
Many papers have employed a PF algorithm in varying forms when solving a STE 
problem as detailed in the table in APPENDIX A. One common area of application 
is when considering homeland and military defence. When considering these 
applications an on-line sequential update STE model is often required to give a 
timely warning of any release, be that covert or not.  

The Monte Carlo Bayesian Data Fusion algorithm (MCBDF) [2] developed by 
Defence Science & Technology Laboratories (DSTL) combines a DE-MC (see 
section 4.3.1.1) approach with elements of a PF (section 5.2) algorithm for 
source term estimation of chemical and biological releases. It is a dynamic 
Bayesian STE model that works in real time and updates the posterior 
distribution as new data arrives. The algorithm is not fixed to specific data types. 
Any data type for which a suitable likelihood model can be implemented prior to 
running can be used to infer the source term. These include high frequency 
concentration measurements, time averaged concentration measurements, 
detector alarms, particle counts and personnel observations. 

The Lawrence Livermore National Laboratory, University of California have also 
developed a model [44] that combines elements of a MCMC and PF approach. As 
with MCBDF the basis of the model is a two step process. Firstly MCMC is used to 
converge the sample hypotheses around the posterior distribution at a particular 
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time step. The PF element of the algorithm then transitions these samples to the 
next time step given the new data. Convergence to the new posterior 
distribution is then achieved using the MCMC step again. Future work intends to 
investigate errors associated with the dispersion model and finalise 
implementation of the framework. 

The authors of [45] have also used a combined MCMC and PF approach to track 
puffs of contaminant clouds. This work will be discussed in section 6. 

6 PLUME TRACKING 

Until this point, all the methods have been discussed from the perspective of 
estimating the source term parameters (i.e. mass, location, time of release). In 
some situations however, the resultant polluted area is the actual characteristic 
of interest. The estimated source term parameters can be used to generate an 
estimate of the polluted area via a dispersion model, but a radically different 
approach is to actually estimate the resulting polluted area directly. In this case 
the state vector (the vector describing the state of the system) would be 
parameters describing the size and location of the pollutant cloud. 

Table 2 in APPENDIX A gives a quick reference guide of the models that use 
plume tracking techniques and an overview of their characteristics. The pollutant 
cloud following a release will continuously evolve and for this reason plume 
tracking models use a sequential update technique (section 5). 

Two distinctly different approaches to plume tracking have been discovered 
during this literature review. The first models a number of individual Gaussian 
puffs which are evolved as data arrives. The concentration at a particular 
location in the domain is given by the sum of the concentrations of the individual 
puffs at that point. This is the same principal on which Gaussian puff ADM’s are 
based. [45] uses a MCMC (see section 4.3.1) based PF (see section 5.2) 
approach for the tracking of multiple contaminant clouds. At each time step 
MCMC is used to estimate the posterior distribution. This converged MCMC 
output then allows for sequential inference at the next time-step. [39] compares 
the performance of the EKF (see 5.1.1) and PF approach when applied to 
tracking of contaminant clouds. 

The second method tracks a concentration contour of the pollutant cloud. [43] 
estimates points on the contour boundary using a moving airborne sensor and 
place several local PF’s at the estimated points. An algorithm is developed to 
initially search for known points on the concentration boundary. The PF’s are 
then used to estimate the boundary at the next time-step given the new mobile 
sensor measurements. 

All the plume tracking models discussed in this report consider a medium domain 
size, typically one to ten kilometres. As discussed previously, the accuracy of the 
dispersion model on the domain size is critical to the success of any estimation 
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technique. With this in mind, the first of the plume tracking techniques discussed 
above explicitly assumes the pollutant cloud can be sufficiently approximated by 
a series of Gaussians puffs. Due to this, the technique is only likely to be 
successful in situations where this is a good approximation. 

7 VARIATIONAL DATA ASSIMILATION 

Data assimilation, used widely in weather forecasting amongst other 
applications, combines forecasted values with observed values to estimate a 
“best guess” for the current state of a system. Variational data assimilation 
minimizes a cost function that balances the error in both the forecasted and 
observed values. In doing so, errors in both sets of data are considered. In STE, 
errors are likely to be inherent in both sets of data since neither ADM’s nor 
sensors are perfect. Inclusion of a scalar parameter can weight the error 
minimization in favour of one set of data, for instance the observed data, whilst 
still acknowledging that both sets of data may contain errors. 

The two main types that have been used in the STE field are three dimensional 
(3dVar) and four dimensional (4dVar) variational data assimilation. 3dVar 
assumes all measurements occur at the same point in time, only taking account 
of spatial variation, whilst 4dVar is an extension that also accounts for variations 
in time. 

Data assimilation techniques have also been used for STE where an initial value 
for the source term is not available. [46] estimates the source term of the 
European Tracer Experiment (ETEX) which provides a long range tracer transport 
data set. A forward and an adjoint dispersion model are combined with a four 
dimensional data assimilation technique. Four dimensional data assimilation is 
used as the data set is collected over a 4 day period. The issue of an initial 
source term estimate is overcome in this case by running the data set backwards 
in time using the adjoint model. With this initial source term estimate, a forward 
dispersion model is then run. The process then continues iteratively, optimizing 
agreement between the measured and modelled data sets. Interestingly, the 
authors of [46] also implement what they refer to as a “poor-man” variational 
approach that is much less computer intensive and the accuracy of the results 
are comparable with the implementation of the full variational method. 

[47] uses a similar technique combining emission rate optimization with 
chemical state estimates. The study assesses the ability of the 4dVar technique 
to estimate pollution precursors on a continental scale. 

Data assimilation techniques, although used widely in weather forecasting, have 
only been applied to STE problems in a limited capacity. Due to the inherent 
errors in both modelled and observed data, the ability of data assimilation 
techniques to optimize agreement between the two sets of data can be of great 
advantage. However, due to the necessity of employing both a forward and 
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adjoint dispersion model the methods can also be very computationally 
intensive. 

8 POST EVENT STUDY 

Some block estimation techniques are used whilst conducting post event studies 
where data has been collected over a long period, possibly many years. For STE 
problems of this kind, time and computing resources are not a significant 
constraint allowing for the use of more complicated dispersion models. 

On a much smaller scale, [48] conducts a post event study to estimate 
emissions of ammonia from known sources on a farm. Passive diffusion samplers 
were used to measure concentrations at locations around the known sources and 
vertical concentration profiles are constructed. An algorithm is employed that 
uses a numerical equation solver to minimize the normalised mean square error 
of modelled and measured concentrations. 

[49] characterises the emission fluxes of bioaerosols from a compost pile at a 
green waste composting facility. Bioaerosol measurements are taken around a 
static compost pile and also following a number of agitation activities so the 
emission fluxes can be characterised. Depletion curves of the bioaerosol with 
distance downwind are constructed via the use of a steady state Gaussian plume 
dispersion model. By characterising these emissions future environmental risk 
assessments of similar composting facilities can be improved. 

To estimate the probable locations for a range of greenhouse gases from 
observations at Mace Head, Ireland, [7] conducts a study using the Met. Office’s 
dispersion model NAME (Numerical Atmospheric-dispersion Modelling 
Environment). Much of the initial work focuses on determining baseline 
concentrations at Mace Head. This is done using the NAME dispersion model to 
account for the background levels of the gases from local sources. The 
dispersion model is then used to predict concentrations from all possible sources 
in Europe over the four year period in question. A least squares approach was 
attempted to characterise the location and emission rates of sources in Europe. 
However, problems were encountered due to all the data being co-located at 
Mace Head. To circumvent these issues, the problem was simplified to assume 
that emission strengths for all sources contributing to Mace Head were equal at a 
given time. 

Further work using concentration measurements from Mace Head over a ten 
year period to estimate emission fluxes of green house gasses over the UK and 
Ireland has been conducted [8]. A method was developed to analyse the 
concentration data and attribute it to either long range European or regional (UK 
and Ireland) sources. To do this, two radioactive tracers measured at Mace Head 
were used. One had a half life in the order of days, the other in the order of 
hours. Selected data was then verified using an adjoint particle dispersion model 
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and high fidelity meteorological data to estimate the back trajectories. From this 
data the emission fluxes were estimated. 

On a similar scale, [6] seeks to find the source of high particulate concentrations 
over the United Kingdom. To accomplish this, two possible sources, a volcano in 
Iceland and the Sahara desert, were identified and the NAME dispersion model 
was used to model the two candidate sources. The modelled results are then 
compared with data collected at various sites across the UK to identify the most 
likely source of the dust cloud. 

Authors contributing to ([6], [7], [8]) have published many papers in this field 
over the last decade. Due to the wide scope of this review, only a selection have 
been discussed above. Interested readers are directed to ([50]-[60]) for more of 
their work in the field. 

When conducting a post event study, unlike in emergency response, time may 
not be a severely limiting factor. This allows for the development of problem 
specific methods that can be optimized to the specific application. Most of the 
papers detailed in this section follow this route and application of the methods 
outside their immediate area of study is limited. 

9 METEOROLOGICAL REQUIREMENTS 

Until this point, there has been little discussion of meteorological inputs into a 
STE model. Although meteorological requirements of particular models is not the 
focus of this report, no review of STE models would be complete without at least 
a brief mention of the important considerations. 

To ensure an ADM’s output is a satisfactory representation of the dispersion of 
material in the environment both the source term and meteorological 
parameters need to be considered. For this reason when considering a STE 
problem, and especially the ADM to be used with in it, the fidelity and accuracy 
of meteorological parameters is important. 

Many STE algorithms on a small or medium size domain use uniform 
meteorology over the whole domain. Uniform meteorology generally leads to 
faster dispersion model runs when compared to the use of high fidelity gridded 
meteorology and is often used when considering a sequential STE model. 

The reverse of this is when post event studies are undertaken. Without the 
computational constraints of sequential models, higher fidelity gridded 
meteorology can be used. STE models on a large scale also require higher 
fidelity meteorology inputs to enable a good approximation of the spread of 
pollutant in the atmosphere. 

Unless meteorological uncertainty is explicitly catered for in the estimation 
technique, the implicit assumption is that the meteorological inputs are an exact 
description of the state of the atmosphere. This is never the case and may often 
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be quite inaccurate. This leads to inaccurate inferences about the source term 
and the associated uncertainty (if it is calculated). 

It often becomes a question of what meteorological data, forecast or measured, 
is available at the time of running the STE algorithm. Combined with this, 
measurements at a specific location may not be characteristic of the wider local 
area due to eddies or terrain features. With these thoughts in mind some STE 
models infer meteorological parameters as part of the state estimate, e.g mean 
wind vector at a specified height, surface roughness and atmospheric stability. 
These models are noted in the parameters estimated column of the tables in 
APPENDIX A. 

10 CONSTRUCTING A SOURCE TERM ESTIMATION 
MODEL 

The techniques discussed in this report are not problem specific and can be used 
to solve the majority of STE problems. The models discussed in this paper have 
been appraised against the set of comparison characteristics in an attempt to 
direct readers to models which consider a similar set of characteristics 
irrespective of the context of use. Some of the advantages and disadvantages of 
particular techniques have been discussed throughout this section and these 
shall now be brought together in this section. Firstly, some of the important 
considerations when constructing a STE model are discussed. 

As the number of source term parameters to be estimated is increased so is the 
complexity of the problem. This in turn leads to a requirement for larger data 
sets. This problem becomes magnified when multiple releases are considered as 
the set of source term parameters is needed for each possible release. Combined 
with this, when multiple releases are considered, the dimensionality of the 
solution space can vary as discussed in section 4.3.2.2. 

Colocated data can also be an issue as discussed [7]. This is because a 
concentration measurement at a particular location could be due to a small 
release close to the location of the measurement or from a larger release further 
away. Without data from multiple locations it is not possible to distinguish 
between many different source term parameters. 

Some ADM’s are only accurate over a limited domain range; hence domain size 
is a very important consideration when selecting an ADM. The ADM is usually the 
most computer intensive part of any STE model so any computational or time 
constraints are also important to consider when selecting an ADM. An adjoint 
ADM may be more applicable if the number of data points is less than the 
number of hypotheses. However, not all ADM’s are reversible. Bayesian and 
Maximum Likelihood Estimation techniques generally require at least first and 
second moments of the concentration ensemble probability distribution to 
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calculate an appropriate data likelihood. Not all dispersion models provide the 
second moment and give a mean concentration only. 

Sequential techniques (see section 5) work in real time, with data added to the 
model as it arrives. These methods can give continuous updates on a dynamic 
system. They usually involve a two step process. A static update at each time 
step and a sequential update between the time steps. For this reason they are 
often more computationally intensive than block techniques, but can start their 
calculations sooner in a real-time application, yielding usable estimates in a 
shorter timescale. One could use a sequential update technique for a block STE 
problem, but it may be less efficient. 

Block techniques require all data to be available prior to initiating the model. 
New data cannot be added to the model once it has been initialised. If 
computational and time constraints allow for the model to be rerun as new data 
arrives then they can be effective techniques for estimating a source term during 
an event. 

It is important to test the STE model using real field data. However, there are 
only limited sets of field data available and so further testing with synthetically 
generated data is common place.  

When testing against synthetic data, the STE model should be tested against 
data generated with the same ADM as the ADM used in the STE model and a 
different, ideally more accurate, one. Using forward data generated by the same 
ADM tests the accuracy of the algorithm itself, where limitations in the ability of 
the ADM to recreate the actual dispersion of material in the environment, due to 
limitations in meteorological data and the dispersion model itself, are ignored. 
Using forward data generated by a different ADM then simulates these 
limitations by incorporating some discrepancies between the data set and the 
ADM used in the STE model. 

10.1 Selecting a goodness-of-fit measure 

LSE is a simple goodness-of-fit measure which can be easily implemented. To 
successfully use a LSE problem it is important to have data at more than one 
location or the problem may not be solvable as discussed by [7]. 

As discussed in section 3.1.2 when a finite number of possible sources are 
considered the problem can be formulated as a set of linear equations. When the 
problem is constructed in this fashion LAE will favour a sparser solution than 
LSE. This sparser solution equates to favouring a smaller number of releases. 
One issue with this approach is that the matrix of linear equations can quickly 
become very large if many parameters and locations are considered.   

LSE, LAE and MLE do not provide any method for characterising the uncertainty 
involved in the solution. Using repeated simulations of noisy forward data, an 
uncertainty can be determined for a given scenario by repeating the estimation. 
However, this cannot be done for a single instance of real data.  



 

32 CONTRACT REPORT FOR ADMLC 

Bayesian inference is a widely used approach in source term estimation that 
deals with uncertainty in a mathematically rigorous manner. When using a 
Bayesian approach, prior knowledge about the probability of a hypothesis can be 
incorporated into the algorithm. Usually an analytical solution does not exist due 
to the complicated nature of the likelihood function and the selection of 
appropriate optimization or sampling technique to explore the posterior 
distribution is very important. 

10.2 Selecting an optimization technique 

By allowing the increases in the value of the cost function on a probabilistic basis 
SA equips the user with a method for escaping local minima in search of the 
global minima. The increase in the cost function that is allowed is guided by a 
parameter which must be specified. This parameter affects the success of the 
algorithm greatly, the optimal value of which is likely to problem specific and not 
necessarily easy to obtain. 

EA’s also allow for escaping local minima by replacing parameters in a 
hypothesis on a probabilistic basis. Similar to SA, parameters such as the 
population size, mutation and crossover rate must be decided upon and greatly 
affect the success of the algorithm. These methods can be very useful when 
searching for the optimal solution. 

Monte Carlo methods have become increasing popular in recent years to solve 
optimization problems. They usually require a burn in period at the beginning of 
the algorithm for the population to cover the solution space before data is 
added. Various algorithms have been developed in recent years including 
Metropolis-coupled reversible jump Markov Chain Monte Carlo (section 4.3.2.2) 
which allows the dimensionality of the solution space to vary if considering a STE 
problem with an unknown number of releases. When capturing the uncertainty in 
a solution is important Monte Carlo sampling techniques are often preferable to 
EA, but MCMC algorithms can be constructed from EA’s [61]. 

10.3 Selecting a sequential technique 

The KF assumes a linear dynamical system perturbed by Gaussian noise and due 
to this, is not suitable for most STE problems. The EKF and UKF are non-linear 
extensions to the standard KF that are suitable for STE when a sequential 
technique is required. The EKF involves updating a covariance matrix at each 
time-step and it can be complex to implement and also memory intensive. One 
significant limitation of these variations of the KF is the assumption of a 
Gaussian posterior distribution. 

The PF is the most widely used sequential technique amongst the models 
mentioned in this report. With sufficient computational power available it 
approaches the optimal Bayesian solution as the sample size of particles is 
increased. 
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11 DISCUSSION 

A literature search has been conducted in to STE, investigating its various 
applications and the techniques used. To enable a structured review of the 
methods, a set of comparison characteristics have been constructed. These 
characteristics allow for the comparison of methods highlighting similarities and 
differences. APPENDIX A contains tables that act as a quick reference guide for 
each of the papers sourced during the literature review and compares the 
methods against these comparison characteristics. 

Various different structures of STE algorithms have been discussed and some of 
the important considerations have been highlighted. Irrespective of the 
application, the majority combine an estimation and optimization technique 
along with an ADM. The exception to this is plume tracking. If an estimate of the 
source term is not required but rather an estimate of the contaminant 
cloud/area, then a plume tracking technique may be suitable. However, limited 
papers in this area were discovered during the literature review. 

Bayesian inference methods are widely used, especially in the defence sector. 
Where some methods require a minimum amount of data before the problem 
can be solved, Bayesian methods allow for a “best guess” solution with the 
available data, no matter how vague. It is also possible to quantify the 
uncertainty in the solution by capturing the posterior distribution successfully. 
This, in turn can be used for optimal decision-taking. 

The traditional KF assumes a linear dynamical system and for this reason is not 
suitable for most STE applications. Some non-linear extensions to the KF such as 
EKF and UKF have been applied to sequential STE problems with varied success. 
Some of the issues encountered ([15], [38], [39]) have been discussed. The PF 
is a widely used alternative often combined with an MCMC approach in a two 
stage inference system. 

Data assimilation techniques have only been applied to STE problems in a limited 
capacity. Due to the inherent errors in both modelled and observed data, the 
ability of data assimilation techniques to optimize agreement between the two 
sets of data can be of great advantage. However, both forward and adjoint 
dispersion models are required. Some dispersion models do not have adjoints 
that match the forward run (e.g. puff splitting or building interactions in urban 
areas).  

One difficulty with many STE techniques is that an initial guess is required to 
start the algorithm. The success of some techniques can be affected greatly by 
the accuracy of this initial guess. This can especially be the case when 
considering a STE problem of high dimensionality. GA and population MCMC 
algorithms are in some respects more robust to this issue as they effectively 
make a number of initial guesses instead of just one. This increases the 
likelihood of an initial guess close to the actual solution. 
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The most computationally intensive part of a STE algorithm can be the repeated 
running of the ADM. Some models ([29], [32]) compute a library of dispersion 
runs prior to the initialisation of the model. Interpolation can then be used when 
the dispersion of a particular source term is required. However, due to this 
interpolation, the accuracy of the dispersion simulation for a particular 
hypothesis will be reduced. This may be an option when using a sequential STE 
model with limited computer power. 

The estimation and optimization techniques covered in this paper are, however, 
not problem specific. They are mathematical techniques and can be applied to 
any STE problem irrespective of context or environment. At the outset an 
understanding of the STE problem should guide the selection of a technique 
rather than the context of use. For instance, the ability to characterise 
meteorology, the parameters to be estimated, and any computational or time 
constraints are some of the important considerations. 

12 RECOMMENDATIONS 

Whilst analysing the results of the initial literature review and preparing this 
report, the search of academic literature continued. This resulted in identification 
of further papers of potential interest. APPENDIX D details these papers that 
have not been reviewed due to time constraints. The review of these papers in 
the structured setting of this report would provide further insight into the 
extensive work undertaken in the field of STE. 

As discussed earlier in this report, errors are inherent in any meteorological 
data, forecasted or measured. An investigation into the sensitivity of particular 
methods to uncertainties in meteorological conditions is an area for future work. 

Two of the models ([65], [66]) in the tables of APPENDIX A, mention moving 
sensors. Further papers mentioned in APPENDIX D, which have not been 
appraised also use moving sensors for STE and this is an interesting area of 
work for further reviews. Radioactive source term estimation of a radioactive 
point source is another area of study that may offer some interesting ideas. 
These models do not require an ADM. In this case the sensor data would be 
readings of emitted radiation as opposed to the diffusion and advection of 
material through the atmosphere. However, the basis of the STE models are the 
same and many similar techniques to those detailed in this report are used. 
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APPENDIX A SOURCE TERM ESTIMATION MODEL TABLES 

The tables in this appendix act as a quick point of reference to the papers sourced during this literature review. All of the 
source term estimation models have been appraised against the comparison characteristics discussed in the body of this 
report. Models with a particular characteristic, for instance ones using a specific technique or implemented on a particular 
domain size, can be easily identified. Once a model of interest has been selected the first column directs the reader to the 
relevant paper for that particular model. 

A1.1 Table of Source Term Estimation models 
 

Table 1: Source term estimation models 

Ref Parameters 
estimated 

Dispersion 
model type 

Data Types Sequential/ 
Block  

Domain 
size 

Search/sample Goodness-of-fit 
measure 

Type of 
Source 

Uncertainty 
Characterised 

[23] [24] 
[25] [26] 
[27] 

Location  
Emission Rate 
Wind direction 

Gaussian 
Plume 

Concentration 
Measurements 

Block Medium Genetic 
Algorithm 

Normalised Root 
Mean Square  

Continuous Yes 

[4] Location 
Emission Rate 
 

Gaussian 
Plume 

Concentration 
Measurements 

Block Large Simulated 
Annealing 

Several cost 
functions 
compared 

Continuous Yes 

[28] Location 
Emission Rate 
Wind direction 

Gaussian 
Plume 

Concentration 
Measurements 

Block Medium Adaptive 
Evolutionary 
Strategy 

Cost Function Continuous No 

[10] Location 
Mass 
Time of 
Release 

Advection-
Diffusion 
equation 

Concentration 
Measurements 

Block Medium MATLAB routine 
fmin 

Least Squares 
(2-norm) 

Instantaneous Yes 

[16] [17] No. of 
Releases 
Location 
Emission Rate 

Gaussian Puff Concentration 
Measurements 
(Others 
Possible) 

Block Small MATLAB function Least Absolute 
Error 
(1-norm) 

Continuous No 
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Table 1: Source term estimation models (continued) 

Ref Parameters 
estimated 

Dispersion 
model type 

Data Types Sequent/ 
Block  

Domain 
size 

Search/sample Goodness-of-fit 
measure 

Type of 
Source 

Uncertainty 
Characterised 

[62] Location 
Emission Rate 
 

Gaussian 
plume + 
stochastic 
turbulent part 

Concentration 
Measurements 

Block Small Importance 
Sampling 

Likelihood 
function 

Continuous No 

[31] Location 
Emission Rate 
Time of 
Release 
Duration 

Eulerian model Concentration 
Measurements 

Block Small Markov Chain 
Monte Carlo 

Likelihood 
function 

Continuous Yes 

[44] Location 
Emission Rate 

Gaussian Puff Concentration 
Measurements 
(Others 
possible) 

Sequential Small 
Medium 

Markov Chain 
Monte Carlo 
Sequential 
Monte Carlo 

Likelihood 
function 

Continuous 
Multiple 
Moving 

Yes 

 
[32] 

Location 
Emission Rate 

Computational 
Fluid Dynamics 

Concentration 
Measurements 

Block Small Markov Chain 
Monte Carlo 

Likelihood 
function 

Continuous Yes 

[2] Location 
Mass/Emission 
rate 
Time Of 
Release 
Duration 
Met 
Parameters 
Probability of 
Release 
Type of 
Material 

Gaussian Puff Material 
Detection 
Concentration 
Measurements 
Particle Counts 
Threshold 
Alarms 
Personnel 
Observations 

Sequential Small 
Medium 
Large 

Differential 
Evolution 
Markov Chain 
Monte Carlo 
Particle Filter 

Likelihood 
function 

Instantaneous 
Continuous 

Yes 

[63] Location Adjoint 
Lagrangian 
Particle 

Concentration 
Measurements 

Block Large Adjoint Model, 
Exhaustive 
gridded search 

Cost Function Continuous No 
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Table 1: Source term estimation models (continued) 

Ref Parameters 
estimated 

Dispersion 
model type 

Data Types Sequent/ 
Block  

Domain size Search/sample Goodness-of-fit 
measure 

Type of 
Source 

Uncertainty 
Characterised 

[33] Location 
Emission Rate 
Met Parameters 

Gaussian 
Plume + 
stochastic 
turbulent part 

Concentration 
Measurements 

Block Medium Markov Chain 
Monte Carlo 

Likelihood 
function 

Continuous Yes 

[64] Location 
Emission Rate 
Time of Release 

Adjoint 
Advection 
Diffusion 

Concentration 
Measurements 

Block Small Need to find 
Max, but not 
mentioned how. 

Geometric 
overlay of 
adjoint releases 

Instantaneous 
Continuous 
Multiple 

No 

[1] Location 
 

Gaussian 
Plume 

Pollution 
emissions 
inventory 
Concentration 
measurements 

Block Medium Manual analysis. Hourly residuals of 
pollution unaccounted for in 
emissions inventory analysed using 
bi-polar plots with Met data to infer 
locations of unknown pollution 
sources. 

Continuous No 

[37] Location 
Mass 
Time of Release 
No. of Releases 

Gaussian Puff Bar sensors 
(Others 
possible) 

Block Small Approximate 
Bayesian 
Computation-
Sequential 
Monte Carlo 

Likelihood 
function 

Instantaneous 
Multiple 

Not mentioned 

[13] Location 
Mass/Emission 
rate 
Times of Release 
Duration 
No. of  Releases 

Adjoint 
Gaussian Puff 

Concentration 
Sensors 

Block Medium Quasi-Newton 
optimization 
method 

Cost Function Instantaneous 
Continuous 
Multiple 

Not 
Mentioned 

[18] Location 
Emission Rate 
Time of Release 
Sensor Noise 
Diffusivity 

Advection 
Diffusion 
Equation 

Concentration 
Sensors 

Block Small Monte Carlo 
Sampling 

Maximum 
Likelihood 
Estimation 

Continuous Yes – Cramer 
Rao Bound 
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Table 1: Source term estimation models (continued) 
 

Ref Parameters 
estimated 

Dispersion 
model type 

Data Types Sequent/ 
Block  

Domain size Search/sample Goodness-of-fit 
measure 

Type of 
Source 

Uncertainty 
Characterised 

[65] Location N/A Concentration 
measurements 

Sequential Small Autonomous Underwater Vehicle 
directed to source via a moth inspired 
behavioural control pattern. 

Continuous No 

[29] Location 
Emission Rate, 
Duration 
Met 
Conditions, 
Building 
Conditions 

Multi-Zone Air 
Flow Model 

Concentration 
measurements 

Sequential Indoor Monte Carlo 
Sampling 

Likelihood 
Function 

Continuous Yes 

[11] Location 
Emission Rate 

Advection 
Diffusion 
Equation 

Integrated 
concentrations 

Block Small Two methods. Firstly, least squares 
estimation with a custom search 
algorithm [12]. Secondly, a 
geometric analysis of overlapping 
regions. 

Instantaneous No 

[34] [35] Location 
Mass 
Time of 
release 

Gaussian 
Plume 

Concentration 
measurements 
Medical 
surveillance data 
Population data 
Commuting data 

Sequential Large Monte Carlo 
Sampling 

Likelihood 
function 

Instantaneous Yes 

[5] Location 
Mass 
Time of 
release 

Gaussian Puff Medical 
surveillance data 
Population data 
Commuting data 

Block Large Markov Chain 
Monte Carlo 

Likelihood 
function 

Instantaneous Yes 

[46] Location 
Emission rate 
Duration 
Time of 
Release 

MATCH model 
(forward & 
adjoint mode) 

Concentration 
measurements 

Block Large Iterative 
minimization 
technique 
combining Adjoint 
& forward model 

Variational 
data 
assimilation 

Continuous No 
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Table 1: Source term estimation models (continued) 

Ref Parameters 
estimated 

Dispersion 
model type 

Data Types Sequential/
Block  

Domain size Search/sample Goodness-of-
fit measure 

Type of 
Source 

Uncertainty 
Characterised 

[66] Location Eulerian model Concentration 
measurements 

Sequential Small Unmanned mobile 
sensing agents 
directed to source 
via a group 
control 
(physicomimetics) 
and collaborative 
search (fluxotaxis) 
algorithm. 

Continuous No  

[47] Location 
Emission rates 

EURAD model 
(forward & 
adjoint mode) 

Concentration 
measurements 

Block Large Iterative 
minimization 
technique 
combining Adjoint 
& forward model 

Variational 
data 
assimilation 

Continuous No 

[3] [67] 
[68] [69] 
[70] 

Location  
Emission rate 
Duration 
Time of 
Release 
Number of 
Releases 

Adjoint 
Advection 
Diffusion  
+ 
Adjoint Particle 

Concentration 
measurements 

Sequential Small 
Medium 
Large 

Metropolis-
Coupled 
Reversible Jump 
MCMC 

Likelihood 
function 

Instantaneous 
Continuous 
Multiple 

Yes 

[7] Location 
Emission rate 

NAME Concentration 
measurements 

Block Large Exhaustive search 
of possible 
locations 

Least Squares 
Approach 

Continuous 
Multiple 

Yes 

[48] Emission rate UK-ADMS Concentration 
measurements 

Block Small Unspecified 
numerical solver 

Normalised 
mean squared 
error 

Continuous 
Multiple 

Yes 

[8] Emission Flux Adjoint Particle  
+  
NAME 

Concentration 
measurements 

Block Large Analysis of radioactive tracer data to 
select data relating to local and long 
range transport. Selected data then 
analysed to estimate emission fluxes. 

Continuous Yes 

[6] Selection of 
location from 2 
possible 
sources 

NAME Concentration 
measurements 

Block Large Two candidate sources modelled. 
Modelled and actual data compared 
to select most likely source. 

Continuous Yes 
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Table 1: Source term estimation models (continued) 
 

Ref Parameters 
estimated 

Dispersion 
model type 

Data Types Sequent/ 
Block  

Domain size Search/sample Goodness-of-
fit measure 

Type of 
Source 

Uncertainty 
Characterised 

[49] Emission Flux Gaussian 
Plume 

Concentration 
measurements 

Block Small Characterise bioaerosol emission 
fluxes from composting facility. 
Depletion curves constructed using 
forward modelling of measured 
concentrations. 

Continuous No 

 

A1.2 Table of Plume Tracking models 
 

Table 2: Plume Tracking Techniques 
Ref Parameters 

estimated 
Dispersion 
model 

Data Types Sequent/ 
Block  

Domain size Search/sample Goodness-of-
fit measure 

Type of 
Source 

Uncertainty 
Characterised 

[39] Contaminant 
cloud 

Gaussian Puff Concentration 
measurements 
Concentration 
bar readings 

Sequential Medium EKF and PF approaches are 
compared. 

Instantaneous No 

[43] Contaminant 
cloud contour 

n/a Concentration 
measurements 

Sequential Medium Unmanned mobile sensors directed 
via a custom algorithm. Multiple 
particle Filters used to track contour 
of contaminant cloud with noisy data. 

Instantaneous Yes 

[45] Contaminant 
cloud 

Stochastic 
Gaussian Puff 

Light Distance 
Ranging (LIDAR) 
measurements 

Sequential Medium MCMC based 
Particle Filter 

Likelihood 
Function 

Multiple 
Instantaneous 

Yes 
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APPENDIX B SOURCE TERM ESTIMATION MODELS BY CONTEXTS OF USE 

Table 3: Source Term Estimation Models by context of use 

Context of use Models 
Defence [2][3][13][27][31][32][33][39][44][45][62][66] 

Local industrial air quality management [1][11][48][49][64]  

Long range air pollution management [6][7][8][46][47][63] 

Public Health [5][34][35] 

Locating oil & gas reserves [4] 

Estimating unspecified airborne contaminant releases [10][16][17][29][43] 

Unspecified [18][28][37][65] 
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APPENDIX C GLOSSARY OF ABBREVIATIONS 

3dVar Three Dimensional Variational Data Assimilation 

4dVar Four Dimensional Variational Data Assimilation 

ABC  Approximate Bayesian Computation 

ADM  Atmospheric Dispersion Model 

ADM  Atmospheric Dispersion Modelling System 

BARD  Bayesian Aerosol Release Detector 

DE-MC Differential Evolution Markov Chain Monte Carlo 

DRDC Defence Research and Development Canada 

DSTL  Defence Science and Technology Laboratories 

EKF  Extended Kalman Filter 

ES  Evolutionary Strategies 

EURAD European Air Pollution Dispersion Model 

GA  Genetic Algorithms 

KF  Kalman Filter 

LAE  Least Absolute Errors 

LSE  Least Squares Estimation 

MCBDF Monte Carlo Bayesian Data Fusion 

MCMC Markov Chain Monte Carlo 

MLE  Maximum Likelihood Estimation 

NAME  Numerical Atmospheric-dispersion Modelling Environment 

SA  Simulated Annealing 

SIR  Sequential Importance Resampling 

UK-ADMS UK Atmospheric Dispersion Modelling System 

UKF  Unscented Kalman Filter 
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APPENDIX D FURTHER LITERATURE SEARCH 
RESULTS 

The following references are the remaining results of the source term estimation 
literature review which have not been appraised (and hence not mentioned in 
this report) due to time constraints. Since they have not been appraised their 
relevance to source term estimation is not guaranteed. The list begins with a 
number of authors known to have published work in the field. 

Sthol A., Sibert P., Wotawa G., Becker A., Bergamanchi P., Krol, Bousquet P., Prinn R. 
 
Sabah A. Abdul-Wahab. Source characterization of atmospheric heavy metals in 

industrial/residential areas: a case study in Oman. J Air Waste Manag Assoc 54 
(4):425-431, 2004. 

W. Agassounon, W. Spears, R. Welsh, D. Zarzhitsky, and D. Spears. Toxic plume source 
localization in urban environments using collaborating robots. 2009 IEEE Conference 
on Technologies for Homeland Security (HST):316-318, 2009. 

Christopher T. Allen, George S. Young, and Sue Ellen Haupt. Improving pollutant source 
characterization by better estimating wind direction with a genetic algorithm. 
Atmospheric Environment 41 (11):2283-2289, 2007. 

M. Aral and J. Guan. Genetic algorithms in search of groundwater pollution sources. 
Advances in groundwater pollution control and remediation.:347-369, 1996. 

A. Atalla and A. Jeremic. Localization of chemical sources using stochastic differential 
equations. ICASSP 2008.IEEE International Conference on Acoustic, Speech and 
Signal Processes:2573-2576, 2008. 

M. C. Baddock, J. E. Bullard, and R. G. Bryant. Dust source identification using MODIS: A 
comparison of techniques applied to the Lake Eyre Basin, Australia. Remote Sensing 
of Environment 113 (7):1511-1528, 2009. 

Keith J. Bein, Yongjing Zhao, Murray V. Johnston, and Anthony S. Wexler. Identification 
of sources of atmospheric PM at the Pittsburgh Supersite--Part III: Source 
characterization. Atmospheric Environment 41 (19):3974-3992, 2007. 

H. J. Bloemen and J. J. Kliest. Methods for source characterization of organic air 
pollutants. Toxicol Ind Health 6 (5):67-80, 1990. 

M. Buscema, E. Grossi, M. Breda, and T. Jefferson. Outbreaks source: A new 
mathematical approach to identify their possible location. Physica A-Statistical 
Mechanics and Its Applications 388 (22):4736-4762, 2009. 

Guido Cervone, Pasquale Franzese, and Adrian Grajdeanu. Characterization of 
atmospheric contaminant sources using adaptive evolutionary algorithms. 
Atmospheric Environment 44 (31):3787-3796, 2010. 

Chih Chung Chang, Jia Lin Wang, Shih Chun Candice Lung, Shaw Chen Liu, and Chein 
Jung Shiu. Source characterization of ozone precursors by complementary 
approaches of vehicular indicator and principal component analysis. Atmospheric 
Environment 43 (10):1771-1778, 2009. 

H. J. Chang, T. Hu, and L. P. Pang. Identification of pollution source location in finite 
space based on a single sensor. Icms2010:Proceedings of the Third International 
Conference on Modelling and Simulation, Vol 4 - Modelling and Simulation in Biology, 
Ecology & Environment 4:322-327, 2010. 
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H. M. Chen. Plume localization using fuzzy hidden Markov model: An efficient decoding 
method. 2007 Ieee International Conference on Fuzzy Systems, Vols 1-4:1267-1271, 
2007. 

W. P. Cheng and Y. F. Jia. Identification of contaminant point source in surface waters 
based on backward location probability density function method. Advances in Water 
Resources 33 (4):397-410, 2010. 

R. Coffey, E. Cummins, V. O' Flaherty, and M. Cormican. Pathogen Sources Estimation 
and Scenario Analysis Using the Soil and Water Assessment Tool (SWAT). Human 
and Ecological Risk Assessment 16 (4):913-933, 2010. 

L. Deguillaume, M. Beekmann, and L. Menut. Bayesian Monte Carlo analysis applied to 
regional- scale inverse emission modeling for reactive trace gases. Journal of 
Geophysical Research-Atmospheres 112 (D2), 2007. 
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term. Environmental Software 5 (2):69-76, 1990. 

A. El Badia, T. Ha-Duong, and A. Hamdi. Identification of a point source in a linear 
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K. Essa and M. El-Otaify. Diffusion from a point source in an urban atmosphere. 
Meteorology and Atmospheric Physics 92 (1-2):95-101, 2006. 

Hedeff I. Essaid, Isabelle M. Cozzarelli, Robert P. Eganhouse, William N. Herkelrath, 
Barbara A. Bekins, and Geoffrey N. Delin. Inverse modeling of BTEX dissolution and 
biodegradation at the Bemidji, MN crude-oil spill site. Journal of Contaminant 
Hydrology 67 (1-4):269-299, 2003. 

V. Fiedler, R. Nau, S. Ludmann, F. Arnold, H. Schlager, and A. Stohl. East Asian SO2 
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